| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplmon2cl.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | mplmon2cl.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 3 |  | mplmon2cl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | mplmon2cl.c | ⊢ 𝐶  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | mplmon2cl.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 6 |  | mplmon2mul.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 7 |  | mplmon2mul.t | ⊢  ∙   =  ( .r ‘ 𝑃 ) | 
						
							| 8 |  | mplmon2mul.u | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 9 |  | mplmon2mul.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐷 ) | 
						
							| 10 |  | mplmon2mul.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐷 ) | 
						
							| 11 |  | mplmon2mul.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐶 ) | 
						
							| 12 |  | mplmon2mul.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐶 ) | 
						
							| 13 | 1 | mplassa | ⊢ ( ( 𝐼  ∈  𝑊  ∧  𝑅  ∈  CRing )  →  𝑃  ∈  AssAlg ) | 
						
							| 14 | 5 6 13 | syl2anc | ⊢ ( 𝜑  →  𝑃  ∈  AssAlg ) | 
						
							| 15 | 1 5 6 | mplsca | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑃 ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( 𝜑  →  ( Base ‘ 𝑅 )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 17 | 4 16 | eqtrid | ⊢ ( 𝜑  →  𝐶  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 18 | 11 17 | eleqtrd | ⊢ ( 𝜑  →  𝐹  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 20 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 21 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 22 | 6 21 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 23 | 1 19 3 20 2 5 22 9 | mplmon | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 24 |  | assalmod | ⊢ ( 𝑃  ∈  AssAlg  →  𝑃  ∈  LMod ) | 
						
							| 25 | 14 24 | syl | ⊢ ( 𝜑  →  𝑃  ∈  LMod ) | 
						
							| 26 | 12 17 | eleqtrd | ⊢ ( 𝜑  →  𝐺  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 27 | 1 19 3 20 2 5 22 10 | mplmon | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 28 |  | eqid | ⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 ) | 
						
							| 29 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 31 | 19 28 29 30 | lmodvscl | ⊢ ( ( 𝑃  ∈  LMod  ∧  𝐺  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∈  ( Base ‘ 𝑃 ) )  →  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 32 | 25 26 27 31 | syl3anc | ⊢ ( 𝜑  →  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 33 | 19 28 30 29 7 | assaass | ⊢ ( ( 𝑃  ∈  AssAlg  ∧  ( 𝐹  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  ∈  ( Base ‘ 𝑃 ) ) )  →  ( ( 𝐹 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  ∙  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) )  =  ( 𝐹 (  ·𝑠  ‘ 𝑃 ) ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∙  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) ) ) | 
						
							| 34 | 14 18 23 32 33 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝐹 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  ∙  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) )  =  ( 𝐹 (  ·𝑠  ‘ 𝑃 ) ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∙  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) ) ) | 
						
							| 35 | 19 28 30 29 7 | assaassr | ⊢ ( ( 𝑃  ∈  AssAlg  ∧  ( 𝐺  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∈  ( Base ‘ 𝑃 ) ) )  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∙  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) )  =  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∙  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) ) | 
						
							| 36 | 14 26 23 27 35 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∙  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) )  =  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∙  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( 𝜑  →  ( 𝐹 (  ·𝑠  ‘ 𝑃 ) ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∙  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) )  =  ( 𝐹 (  ·𝑠  ‘ 𝑃 ) ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∙  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) ) ) | 
						
							| 38 | 1 19 3 20 2 5 22 9 7 10 | mplmonmul | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∙  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∙  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) )  =  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( 𝜑  →  ( 𝐹 (  ·𝑠  ‘ 𝑃 ) ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∙  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) )  =  ( 𝐹 (  ·𝑠  ‘ 𝑃 ) ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) ) | 
						
							| 41 | 2 | psrbagaddcl | ⊢ ( ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 )  →  ( 𝑋  ∘f   +  𝑌 )  ∈  𝐷 ) | 
						
							| 42 | 9 10 41 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ∘f   +  𝑌 )  ∈  𝐷 ) | 
						
							| 43 | 1 19 3 20 2 5 22 42 | mplmon | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 44 |  | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑃 ) )  =  ( .r ‘ ( Scalar ‘ 𝑃 ) ) | 
						
							| 45 | 19 28 29 30 44 | lmodvsass | ⊢ ( ( 𝑃  ∈  LMod  ∧  ( 𝐹  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  𝐺  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∈  ( Base ‘ 𝑃 ) ) )  →  ( ( 𝐹 ( .r ‘ ( Scalar ‘ 𝑃 ) ) 𝐺 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  =  ( 𝐹 (  ·𝑠  ‘ 𝑃 ) ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) ) | 
						
							| 46 | 25 18 26 43 45 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝐹 ( .r ‘ ( Scalar ‘ 𝑃 ) ) 𝐺 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  =  ( 𝐹 (  ·𝑠  ‘ 𝑃 ) ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) ) | 
						
							| 47 | 15 | fveq2d | ⊢ ( 𝜑  →  ( .r ‘ 𝑅 )  =  ( .r ‘ ( Scalar ‘ 𝑃 ) ) ) | 
						
							| 48 | 8 47 | eqtr2id | ⊢ ( 𝜑  →  ( .r ‘ ( Scalar ‘ 𝑃 ) )  =   ·  ) | 
						
							| 49 | 48 | oveqd | ⊢ ( 𝜑  →  ( 𝐹 ( .r ‘ ( Scalar ‘ 𝑃 ) ) 𝐺 )  =  ( 𝐹  ·  𝐺 ) ) | 
						
							| 50 | 49 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐹 ( .r ‘ ( Scalar ‘ 𝑃 ) ) 𝐺 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  =  ( ( 𝐹  ·  𝐺 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) | 
						
							| 51 | 40 46 50 | 3eqtr2d | ⊢ ( 𝜑  →  ( 𝐹 (  ·𝑠  ‘ 𝑃 ) ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) )  ∙  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) )  =  ( ( 𝐹  ·  𝐺 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) | 
						
							| 52 | 34 37 51 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐹 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  ∙  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) )  =  ( ( 𝐹  ·  𝐺 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) ) | 
						
							| 53 | 1 29 2 20 3 4 5 22 9 11 | mplmon2 | ⊢ ( 𝜑  →  ( 𝐹 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  𝐹 ,   0  ) ) ) | 
						
							| 54 | 1 29 2 20 3 4 5 22 10 12 | mplmon2 | ⊢ ( 𝜑  →  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  𝐺 ,   0  ) ) ) | 
						
							| 55 | 53 54 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐹 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  ∙  ( 𝐺 (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  ( 1r ‘ 𝑅 ) ,   0  ) ) ) )  =  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  𝐹 ,   0  ) )  ∙  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  𝐺 ,   0  ) ) ) ) | 
						
							| 56 | 4 8 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐹  ∈  𝐶  ∧  𝐺  ∈  𝐶 )  →  ( 𝐹  ·  𝐺 )  ∈  𝐶 ) | 
						
							| 57 | 22 11 12 56 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  ·  𝐺 )  ∈  𝐶 ) | 
						
							| 58 | 1 29 2 20 3 4 5 22 42 57 | mplmon2 | ⊢ ( 𝜑  →  ( ( 𝐹  ·  𝐺 ) (  ·𝑠  ‘ 𝑃 ) ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 1r ‘ 𝑅 ) ,   0  ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 𝐹  ·  𝐺 ) ,   0  ) ) ) | 
						
							| 59 | 52 55 58 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑋 ,  𝐹 ,   0  ) )  ∙  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  𝑌 ,  𝐺 ,   0  ) ) )  =  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  =  ( 𝑋  ∘f   +  𝑌 ) ,  ( 𝐹  ·  𝐺 ) ,   0  ) ) ) |