| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplmon.s |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mplmon.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
mplmon.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
mplmon.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 5 |
|
mplmon.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 6 |
|
mplmon.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 7 |
|
mplmon.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 8 |
|
mplmon.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 9 |
|
mplmonmul.t |
⊢ · = ( .r ‘ 𝑃 ) |
| 10 |
|
mplmonmul.x |
⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) |
| 11 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 12 |
1 2 3 4 5 6 7 8
|
mplmon |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ 𝐵 ) |
| 13 |
1 2 3 4 5 6 7 10
|
mplmon |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ∈ 𝐵 ) |
| 14 |
1 2 11 9 5 12 13
|
mplmul |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) |
| 15 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑘 → ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) ↔ 𝑘 = ( 𝑋 ∘f + 𝑌 ) ) ) |
| 16 |
15
|
ifbid |
⊢ ( 𝑦 = 𝑘 → if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) = if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) |
| 17 |
16
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 19 |
18
|
snssd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → { 𝑋 } ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 20 |
19
|
resmptd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) = ( 𝑗 ∈ { 𝑋 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑅 Σg ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑋 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) |
| 22 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑅 ∈ Ring ) |
| 23 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
| 24 |
22 23
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑅 ∈ Mnd ) |
| 25 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑋 ∈ 𝐷 ) |
| 26 |
|
iftrue |
⊢ ( 𝑦 = 𝑋 → if ( 𝑦 = 𝑋 , 1 , 0 ) = 1 ) |
| 27 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) |
| 28 |
4
|
fvexi |
⊢ 1 ∈ V |
| 29 |
26 27 28
|
fvmpt |
⊢ ( 𝑋 ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 ) |
| 30 |
25 29
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 ) |
| 31 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ⊆ 𝐷 |
| 32 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑘 ∈ 𝐷 ) |
| 33 |
|
eqid |
⊢ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } = { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } |
| 34 |
5 33
|
psrbagconcl |
⊢ ( ( 𝑘 ∈ 𝐷 ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑋 ) ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 35 |
32 18 34
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑋 ) ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 36 |
31 35
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑋 ) ∈ 𝐷 ) |
| 37 |
|
eqeq1 |
⊢ ( 𝑦 = ( 𝑘 ∘f − 𝑋 ) → ( 𝑦 = 𝑌 ↔ ( 𝑘 ∘f − 𝑋 ) = 𝑌 ) ) |
| 38 |
37
|
ifbid |
⊢ ( 𝑦 = ( 𝑘 ∘f − 𝑋 ) → if ( 𝑦 = 𝑌 , 1 , 0 ) = if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) |
| 39 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) |
| 40 |
3
|
fvexi |
⊢ 0 ∈ V |
| 41 |
28 40
|
ifex |
⊢ if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ∈ V |
| 42 |
38 39 41
|
fvmpt |
⊢ ( ( 𝑘 ∘f − 𝑋 ) ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) = if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) |
| 43 |
36 42
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) = if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) |
| 44 |
30 43
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) = ( 1 ( .r ‘ 𝑅 ) if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) ) |
| 45 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 46 |
45 4
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 47 |
45 3
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 48 |
46 47
|
ifcld |
⊢ ( 𝑅 ∈ Ring → if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 49 |
22 48
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 50 |
45 11 4
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) = if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) |
| 51 |
22 49 50
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 1 ( .r ‘ 𝑅 ) if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) = if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) |
| 52 |
5
|
psrbagf |
⊢ ( 𝑘 ∈ 𝐷 → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 53 |
32 52
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 54 |
53
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ) |
| 55 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑋 ∈ 𝐷 ) |
| 56 |
5
|
psrbagf |
⊢ ( 𝑋 ∈ 𝐷 → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 57 |
55 56
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 58 |
57
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑧 ) ∈ ℕ0 ) |
| 59 |
58
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑧 ) ∈ ℕ0 ) |
| 60 |
5
|
psrbagf |
⊢ ( 𝑌 ∈ 𝐷 → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 61 |
10 60
|
syl |
⊢ ( 𝜑 → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 63 |
62
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) |
| 64 |
63
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) |
| 65 |
|
nn0cn |
⊢ ( ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑘 ‘ 𝑧 ) ∈ ℂ ) |
| 66 |
|
nn0cn |
⊢ ( ( 𝑋 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑋 ‘ 𝑧 ) ∈ ℂ ) |
| 67 |
|
nn0cn |
⊢ ( ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑌 ‘ 𝑧 ) ∈ ℂ ) |
| 68 |
|
subadd |
⊢ ( ( ( 𝑘 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝑋 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℂ ) → ( ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) = ( 𝑌 ‘ 𝑧 ) ↔ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) = ( 𝑘 ‘ 𝑧 ) ) ) |
| 69 |
65 66 67 68
|
syl3an |
⊢ ( ( ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑋 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) → ( ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) = ( 𝑌 ‘ 𝑧 ) ↔ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) = ( 𝑘 ‘ 𝑧 ) ) ) |
| 70 |
54 59 64 69
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) = ( 𝑌 ‘ 𝑧 ) ↔ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) = ( 𝑘 ‘ 𝑧 ) ) ) |
| 71 |
|
eqcom |
⊢ ( ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) = ( 𝑘 ‘ 𝑧 ) ↔ ( 𝑘 ‘ 𝑧 ) = ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) |
| 72 |
70 71
|
bitrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) = ( 𝑌 ‘ 𝑧 ) ↔ ( 𝑘 ‘ 𝑧 ) = ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 73 |
72
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ∀ 𝑧 ∈ 𝐼 ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) = ( 𝑌 ‘ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐼 ( 𝑘 ‘ 𝑧 ) = ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 74 |
|
mpteqb |
⊢ ( ∀ 𝑧 ∈ 𝐼 ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ∈ V → ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐼 ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) = ( 𝑌 ‘ 𝑧 ) ) ) |
| 75 |
|
ovexd |
⊢ ( 𝑧 ∈ 𝐼 → ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ∈ V ) |
| 76 |
74 75
|
mprg |
⊢ ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐼 ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) = ( 𝑌 ‘ 𝑧 ) ) |
| 77 |
|
mpteqb |
⊢ ( ∀ 𝑧 ∈ 𝐼 ( 𝑘 ‘ 𝑧 ) ∈ V → ( ( 𝑧 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐼 ( 𝑘 ‘ 𝑧 ) = ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 78 |
|
fvexd |
⊢ ( 𝑧 ∈ 𝐼 → ( 𝑘 ‘ 𝑧 ) ∈ V ) |
| 79 |
77 78
|
mprg |
⊢ ( ( 𝑧 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐼 ( 𝑘 ‘ 𝑧 ) = ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) |
| 80 |
73 76 79
|
3bitr4g |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑧 ) ) ↔ ( 𝑧 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) ) |
| 81 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝐼 ∈ 𝑊 ) |
| 82 |
53
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑘 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑧 ) ) ) |
| 83 |
57
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑋 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑧 ) ) ) |
| 84 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑋 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑧 ) ) ) |
| 85 |
81 54 59 82 84
|
offval2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑋 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) ) |
| 86 |
62
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑌 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑧 ) ) ) |
| 87 |
86
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑌 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑧 ) ) ) |
| 88 |
85 87
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 ↔ ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 89 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
| 90 |
89 58 63 83 86
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑋 ∘f + 𝑌 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 91 |
90
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑋 ∘f + 𝑌 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 92 |
82 91
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) ↔ ( 𝑧 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) ) |
| 93 |
80 88 92
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 ↔ 𝑘 = ( 𝑋 ∘f + 𝑌 ) ) ) |
| 94 |
93
|
ifbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) = if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) |
| 95 |
44 51 94
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) = if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) |
| 96 |
94 49
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 97 |
95 96
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 98 |
|
fveq2 |
⊢ ( 𝑗 = 𝑋 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ) |
| 99 |
|
oveq2 |
⊢ ( 𝑗 = 𝑋 → ( 𝑘 ∘f − 𝑗 ) = ( 𝑘 ∘f − 𝑋 ) ) |
| 100 |
99
|
fveq2d |
⊢ ( 𝑗 = 𝑋 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) |
| 101 |
98 100
|
oveq12d |
⊢ ( 𝑗 = 𝑋 → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) = ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) ) |
| 102 |
45 101
|
gsumsn |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑋 ∈ 𝐷 ∧ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 Σg ( 𝑗 ∈ { 𝑋 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) = ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) ) |
| 103 |
24 25 97 102
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑅 Σg ( 𝑗 ∈ { 𝑋 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) = ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) ) |
| 104 |
21 103 95
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑅 Σg ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) ) = if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) |
| 105 |
3
|
gsum0 |
⊢ ( 𝑅 Σg ∅ ) = 0 |
| 106 |
|
disjsn |
⊢ ( ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 107 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑅 ∈ Ring ) |
| 108 |
1 45 2 5 12
|
mplelf |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 109 |
108
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 110 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 111 |
31 110
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑗 ∈ 𝐷 ) |
| 112 |
109 111
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 113 |
1 45 2 5 13
|
mplelf |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 114 |
113
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 115 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑘 ∈ 𝐷 ) |
| 116 |
5 33
|
psrbagconcl |
⊢ ( ( 𝑘 ∈ 𝐷 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑗 ) ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 117 |
115 110 116
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑗 ) ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 118 |
31 117
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑗 ) ∈ 𝐷 ) |
| 119 |
114 118
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 120 |
45 11
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 121 |
107 112 119 120
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 122 |
121
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ⟶ ( Base ‘ 𝑅 ) ) |
| 123 |
|
ffn |
⊢ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ⟶ ( Base ‘ 𝑅 ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) Fn { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 124 |
|
fnresdisj |
⊢ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) Fn { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } → ( ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∩ { 𝑋 } ) = ∅ ↔ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) = ∅ ) ) |
| 125 |
122 123 124
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∩ { 𝑋 } ) = ∅ ↔ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) = ∅ ) ) |
| 126 |
125
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∩ { 𝑋 } ) = ∅ ) → ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) = ∅ ) |
| 127 |
106 126
|
sylan2br |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ ¬ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) = ∅ ) |
| 128 |
127
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ ¬ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑅 Σg ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) ) = ( 𝑅 Σg ∅ ) ) |
| 129 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) ↔ 𝑋 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) ) ) |
| 130 |
58
|
nn0red |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑧 ) ∈ ℝ ) |
| 131 |
|
nn0addge1 |
⊢ ( ( ( 𝑋 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) → ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) |
| 132 |
130 63 131
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) |
| 133 |
132
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ∀ 𝑧 ∈ 𝐼 ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) |
| 134 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ∈ V ) |
| 135 |
89 58 134 83 90
|
ofrfval2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑋 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) ↔ ∀ 𝑧 ∈ 𝐼 ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 136 |
133 135
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑋 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) ) |
| 137 |
129 55 136
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) } ) |
| 138 |
|
breq2 |
⊢ ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) → ( 𝑥 ∘r ≤ 𝑘 ↔ 𝑥 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) ) ) |
| 139 |
138
|
rabbidv |
⊢ ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } = { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) } ) |
| 140 |
139
|
eleq2d |
⊢ ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) → ( 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↔ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) } ) ) |
| 141 |
137 140
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) → 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) ) |
| 142 |
141
|
con3dimp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ ¬ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ¬ 𝑘 = ( 𝑋 ∘f + 𝑌 ) ) |
| 143 |
142
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ ¬ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) = 0 ) |
| 144 |
105 128 143
|
3eqtr4a |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ ¬ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑅 Σg ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) ) = if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) |
| 145 |
104 144
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) ) = if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) |
| 146 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 147 |
|
ringcmn |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) |
| 148 |
146 147
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ CMnd ) |
| 149 |
5
|
psrbaglefi |
⊢ ( 𝑘 ∈ 𝐷 → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∈ Fin ) |
| 150 |
149
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∈ Fin ) |
| 151 |
|
ssdif |
⊢ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ⊆ 𝐷 → ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) ⊆ ( 𝐷 ∖ { 𝑋 } ) ) |
| 152 |
31 151
|
ax-mp |
⊢ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) ⊆ ( 𝐷 ∖ { 𝑋 } ) |
| 153 |
152
|
sseli |
⊢ ( 𝑗 ∈ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) → 𝑗 ∈ ( 𝐷 ∖ { 𝑋 } ) ) |
| 154 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 155 |
|
eldifsni |
⊢ ( 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) → 𝑦 ≠ 𝑋 ) |
| 156 |
155
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) ) → 𝑦 ≠ 𝑋 ) |
| 157 |
156
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) ) → ¬ 𝑦 = 𝑋 ) |
| 158 |
157
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) ) → if ( 𝑦 = 𝑋 , 1 , 0 ) = 0 ) |
| 159 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 160 |
5 159
|
rabex2 |
⊢ 𝐷 ∈ V |
| 161 |
160
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝐷 ∈ V ) |
| 162 |
158 161
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) supp 0 ) ⊆ { 𝑋 } ) |
| 163 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 0 ∈ V ) |
| 164 |
154 162 161 163
|
suppssr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ ( 𝐷 ∖ { 𝑋 } ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) = 0 ) |
| 165 |
153 164
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) = 0 ) |
| 166 |
165
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) ) → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) = ( 0 ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) |
| 167 |
|
eldifi |
⊢ ( 𝑗 ∈ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) → 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 168 |
45 11 3
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) = 0 ) |
| 169 |
107 119 168
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 0 ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) = 0 ) |
| 170 |
167 169
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) ) → ( 0 ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) = 0 ) |
| 171 |
166 170
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) ) → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) = 0 ) |
| 172 |
160
|
rabex |
⊢ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∈ V |
| 173 |
172
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∈ V ) |
| 174 |
171 173
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) supp 0 ) ⊆ { 𝑋 } ) |
| 175 |
160
|
mptrabex |
⊢ ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ∈ V |
| 176 |
|
funmpt |
⊢ Fun ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) |
| 177 |
175 176 40
|
3pm3.2i |
⊢ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ∧ 0 ∈ V ) |
| 178 |
177
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ∧ 0 ∈ V ) ) |
| 179 |
|
snfi |
⊢ { 𝑋 } ∈ Fin |
| 180 |
179
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → { 𝑋 } ∈ Fin ) |
| 181 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ∧ 0 ∈ V ) ∧ ( { 𝑋 } ∈ Fin ∧ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) supp 0 ) ⊆ { 𝑋 } ) ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) finSupp 0 ) |
| 182 |
178 180 174 181
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) finSupp 0 ) |
| 183 |
45 3 148 150 122 174 182
|
gsumres |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) |
| 184 |
145 183
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) |
| 185 |
184
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) |
| 186 |
17 185
|
eqtrid |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) |
| 187 |
14 186
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) ) |