Metamath Proof Explorer


Theorem mplmulr

Description: Value of multiplication in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplplusg.y 𝑌 = ( 𝐼 mPoly 𝑅 )
mplplusg.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
mplmulr.n · = ( .r𝑌 )
Assertion mplmulr · = ( .r𝑆 )

Proof

Step Hyp Ref Expression
1 mplplusg.y 𝑌 = ( 𝐼 mPoly 𝑅 )
2 mplplusg.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
3 mplmulr.n · = ( .r𝑌 )
4 fvex ( Base ‘ 𝑌 ) ∈ V
5 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
6 1 2 5 mplval2 𝑌 = ( 𝑆s ( Base ‘ 𝑌 ) )
7 eqid ( .r𝑆 ) = ( .r𝑆 )
8 6 7 ressmulr ( ( Base ‘ 𝑌 ) ∈ V → ( .r𝑆 ) = ( .r𝑌 ) )
9 4 8 ax-mp ( .r𝑆 ) = ( .r𝑌 )
10 3 9 eqtr4i · = ( .r𝑆 )