| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplneg.p | ⊢ 𝑃  =  ( 𝐼  mPoly  𝑅 ) | 
						
							| 2 |  | mplneg.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 3 |  | mplneg.n | ⊢ 𝑁  =  ( invg ‘ 𝑅 ) | 
						
							| 4 |  | mplneg.m | ⊢ 𝑀  =  ( invg ‘ 𝑃 ) | 
						
							| 5 |  | mplneg.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 6 |  | mplneg.r | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 7 |  | mplneg.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | eqid | ⊢ ( 𝐼  mPwSer  𝑅 )  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 9 | 8 1 2 5 6 | mplsubg | ⊢ ( 𝜑  →  𝐵  ∈  ( SubGrp ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 10 | 1 8 2 | mplval2 | ⊢ 𝑃  =  ( ( 𝐼  mPwSer  𝑅 )  ↾s  𝐵 ) | 
						
							| 11 |  | eqid | ⊢ ( invg ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( invg ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 12 | 10 11 4 | subginv | ⊢ ( ( 𝐵  ∈  ( SubGrp ‘ ( 𝐼  mPwSer  𝑅 ) )  ∧  𝑋  ∈  𝐵 )  →  ( ( invg ‘ ( 𝐼  mPwSer  𝑅 ) ) ‘ 𝑋 )  =  ( 𝑀 ‘ 𝑋 ) ) | 
						
							| 13 | 9 7 12 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ ( 𝐼  mPwSer  𝑅 ) ) ‘ 𝑋 )  =  ( 𝑀 ‘ 𝑋 ) ) | 
						
							| 14 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ ( 𝐼  mPwSer  𝑅 ) )  =  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 16 | 1 8 2 15 | mplbasss | ⊢ 𝐵  ⊆  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) | 
						
							| 17 | 16 | sseli | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  ∈  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 18 | 7 17 | syl | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ ( 𝐼  mPwSer  𝑅 ) ) ) | 
						
							| 19 | 8 5 6 14 3 15 11 18 | psrneg | ⊢ ( 𝜑  →  ( ( invg ‘ ( 𝐼  mPwSer  𝑅 ) ) ‘ 𝑋 )  =  ( 𝑁  ∘  𝑋 ) ) | 
						
							| 20 | 13 19 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑋 )  =  ( 𝑁  ∘  𝑋 ) ) |