Metamath Proof Explorer
Description: Reverse closure for the polynomial index set. (Contributed by Stefan
O'Rear, 19-Mar-2015) (Revised by Mario Carneiro, 30-Aug-2015)
|
|
Ref |
Expression |
|
Hypotheses |
mplrcl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
|
|
mplrcl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
|
Assertion |
mplrcl |
⊢ ( 𝑋 ∈ 𝐵 → 𝐼 ∈ V ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mplrcl.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
2 |
|
mplrcl.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
reldmmpl |
⊢ Rel dom mPoly |
4 |
1 2 3
|
strov2rcl |
⊢ ( 𝑋 ∈ 𝐵 → 𝐼 ∈ V ) |