Metamath Proof Explorer


Theorem mplrcl

Description: Reverse closure for the polynomial index set. (Contributed by Stefan O'Rear, 19-Mar-2015) (Revised by Mario Carneiro, 30-Aug-2015)

Ref Expression
Hypotheses mplrcl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplrcl.b 𝐵 = ( Base ‘ 𝑃 )
Assertion mplrcl ( 𝑋𝐵𝐼 ∈ V )

Proof

Step Hyp Ref Expression
1 mplrcl.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplrcl.b 𝐵 = ( Base ‘ 𝑃 )
3 reldmmpl Rel dom mPoly
4 1 2 3 strov2rcl ( 𝑋𝐵𝐼 ∈ V )