Step |
Hyp |
Ref |
Expression |
1 |
|
mplsubg.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
mplsubg.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mplsubg.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
4 |
|
mplsubg.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
5 |
|
mpllss.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
8 |
1 2 3 4 7
|
mplsubg |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) |
9 |
1 4 5
|
psrring |
⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
12 |
10 11
|
ringidcl |
⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
13 |
9 12
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ) |
14 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
16 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
17 |
1 4 5 14 15 16 11
|
psr1 |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
18 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
19 |
18
|
mptrabex |
⊢ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ V |
20 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
21 |
|
fvex |
⊢ ( 0g ‘ 𝑅 ) ∈ V |
22 |
19 20 21
|
3pm3.2i |
⊢ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) |
23 |
22
|
a1i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ) |
24 |
|
snfi |
⊢ { ( 𝐼 × { 0 } ) } ∈ Fin |
25 |
24
|
a1i |
⊢ ( 𝜑 → { ( 𝐼 × { 0 } ) } ∈ Fin ) |
26 |
|
eldifsni |
⊢ ( 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝐼 × { 0 } ) } ) → 𝑘 ≠ ( 𝐼 × { 0 } ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝐼 × { 0 } ) } ) ) → 𝑘 ≠ ( 𝐼 × { 0 } ) ) |
28 |
|
ifnefalse |
⊢ ( 𝑘 ≠ ( 𝐼 × { 0 } ) → if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝐼 × { 0 } ) } ) ) → if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
30 |
18
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
31 |
30
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
32 |
29 31
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ( 𝐼 × { 0 } ) } ) |
33 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( { ( 𝐼 × { 0 } ) } ∈ Fin ∧ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { ( 𝐼 × { 0 } ) } ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
34 |
23 25 32 33
|
syl12anc |
⊢ ( 𝜑 → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
35 |
17 34
|
eqbrtrd |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) finSupp ( 0g ‘ 𝑅 ) ) |
36 |
2 1 10 15 3
|
mplelbas |
⊢ ( ( 1r ‘ 𝑆 ) ∈ 𝑈 ↔ ( ( 1r ‘ 𝑆 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) finSupp ( 0g ‘ 𝑅 ) ) ) |
37 |
13 35 36
|
sylanbrc |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ 𝑈 ) |
38 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝐼 ∈ 𝑊 ) |
39 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑅 ∈ Ring ) |
40 |
|
eqid |
⊢ ( ∘f + “ ( ( 𝑥 supp ( 0g ‘ 𝑅 ) ) × ( 𝑦 supp ( 0g ‘ 𝑅 ) ) ) ) = ( ∘f + “ ( ( 𝑥 supp ( 0g ‘ 𝑅 ) ) × ( 𝑦 supp ( 0g ‘ 𝑅 ) ) ) ) |
41 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
42 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ 𝑈 ) |
43 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) |
44 |
1 2 3 38 39 14 15 40 41 42 43
|
mplsubrglem |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑈 ) |
45 |
44
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑈 ) |
46 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
47 |
10 11 46
|
issubrg2 |
⊢ ( 𝑆 ∈ Ring → ( 𝑈 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑈 ) ) ) |
48 |
9 47
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ∧ ( 1r ‘ 𝑆 ) ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑈 ) ) ) |
49 |
8 37 45 48
|
mpbir3and |
⊢ ( 𝜑 → 𝑈 ∈ ( SubRing ‘ 𝑆 ) ) |