Metamath Proof Explorer


Theorem mplsubrg

Description: The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mplsubg.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
mplsubg.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplsubg.u 𝑈 = ( Base ‘ 𝑃 )
mplsubg.i ( 𝜑𝐼𝑊 )
mpllss.r ( 𝜑𝑅 ∈ Ring )
Assertion mplsubrg ( 𝜑𝑈 ∈ ( SubRing ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 mplsubg.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 mplsubg.p 𝑃 = ( 𝐼 mPoly 𝑅 )
3 mplsubg.u 𝑈 = ( Base ‘ 𝑃 )
4 mplsubg.i ( 𝜑𝐼𝑊 )
5 mpllss.r ( 𝜑𝑅 ∈ Ring )
6 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
7 5 6 syl ( 𝜑𝑅 ∈ Grp )
8 1 2 3 4 7 mplsubg ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝑆 ) )
9 1 4 5 psrring ( 𝜑𝑆 ∈ Ring )
10 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
11 eqid ( 1r𝑆 ) = ( 1r𝑆 )
12 10 11 ringidcl ( 𝑆 ∈ Ring → ( 1r𝑆 ) ∈ ( Base ‘ 𝑆 ) )
13 9 12 syl ( 𝜑 → ( 1r𝑆 ) ∈ ( Base ‘ 𝑆 ) )
14 eqid { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin }
15 eqid ( 0g𝑅 ) = ( 0g𝑅 )
16 eqid ( 1r𝑅 ) = ( 1r𝑅 )
17 1 4 5 14 15 16 11 psr1 ( 𝜑 → ( 1r𝑆 ) = ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) )
18 ovex ( ℕ0m 𝐼 ) ∈ V
19 18 mptrabex ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ∈ V
20 funmpt Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) )
21 fvex ( 0g𝑅 ) ∈ V
22 19 20 21 3pm3.2i ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ∧ ( 0g𝑅 ) ∈ V )
23 22 a1i ( 𝜑 → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ∧ ( 0g𝑅 ) ∈ V ) )
24 snfi { ( 𝐼 × { 0 } ) } ∈ Fin
25 24 a1i ( 𝜑 → { ( 𝐼 × { 0 } ) } ∈ Fin )
26 eldifsni ( 𝑘 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝐼 × { 0 } ) } ) → 𝑘 ≠ ( 𝐼 × { 0 } ) )
27 26 adantl ( ( 𝜑𝑘 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝐼 × { 0 } ) } ) ) → 𝑘 ≠ ( 𝐼 × { 0 } ) )
28 ifnefalse ( 𝑘 ≠ ( 𝐼 × { 0 } ) → if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) = ( 0g𝑅 ) )
29 27 28 syl ( ( 𝜑𝑘 ∈ ( { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∖ { ( 𝐼 × { 0 } ) } ) ) → if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) = ( 0g𝑅 ) )
30 18 rabex { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∈ V
31 30 a1i ( 𝜑 → { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ∈ V )
32 29 31 suppss2 ( 𝜑 → ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) supp ( 0g𝑅 ) ) ⊆ { ( 𝐼 × { 0 } ) } )
33 suppssfifsupp ( ( ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) ∧ ( 0g𝑅 ) ∈ V ) ∧ ( { ( 𝐼 × { 0 } ) } ∈ Fin ∧ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) supp ( 0g𝑅 ) ) ⊆ { ( 𝐼 × { 0 } ) } ) ) → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) finSupp ( 0g𝑅 ) )
34 23 25 32 33 syl12anc ( 𝜑 → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0m 𝐼 ) ∣ ( 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑘 = ( 𝐼 × { 0 } ) , ( 1r𝑅 ) , ( 0g𝑅 ) ) ) finSupp ( 0g𝑅 ) )
35 17 34 eqbrtrd ( 𝜑 → ( 1r𝑆 ) finSupp ( 0g𝑅 ) )
36 2 1 10 15 3 mplelbas ( ( 1r𝑆 ) ∈ 𝑈 ↔ ( ( 1r𝑆 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 1r𝑆 ) finSupp ( 0g𝑅 ) ) )
37 13 35 36 sylanbrc ( 𝜑 → ( 1r𝑆 ) ∈ 𝑈 )
38 4 adantr ( ( 𝜑 ∧ ( 𝑥𝑈𝑦𝑈 ) ) → 𝐼𝑊 )
39 5 adantr ( ( 𝜑 ∧ ( 𝑥𝑈𝑦𝑈 ) ) → 𝑅 ∈ Ring )
40 eqid ( ∘f + “ ( ( 𝑥 supp ( 0g𝑅 ) ) × ( 𝑦 supp ( 0g𝑅 ) ) ) ) = ( ∘f + “ ( ( 𝑥 supp ( 0g𝑅 ) ) × ( 𝑦 supp ( 0g𝑅 ) ) ) )
41 eqid ( .r𝑅 ) = ( .r𝑅 )
42 simprl ( ( 𝜑 ∧ ( 𝑥𝑈𝑦𝑈 ) ) → 𝑥𝑈 )
43 simprr ( ( 𝜑 ∧ ( 𝑥𝑈𝑦𝑈 ) ) → 𝑦𝑈 )
44 1 2 3 38 39 14 15 40 41 42 43 mplsubrglem ( ( 𝜑 ∧ ( 𝑥𝑈𝑦𝑈 ) ) → ( 𝑥 ( .r𝑆 ) 𝑦 ) ∈ 𝑈 )
45 44 ralrimivva ( 𝜑 → ∀ 𝑥𝑈𝑦𝑈 ( 𝑥 ( .r𝑆 ) 𝑦 ) ∈ 𝑈 )
46 eqid ( .r𝑆 ) = ( .r𝑆 )
47 10 11 46 issubrg2 ( 𝑆 ∈ Ring → ( 𝑈 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ∧ ( 1r𝑆 ) ∈ 𝑈 ∧ ∀ 𝑥𝑈𝑦𝑈 ( 𝑥 ( .r𝑆 ) 𝑦 ) ∈ 𝑈 ) ) )
48 9 47 syl ( 𝜑 → ( 𝑈 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ∧ ( 1r𝑆 ) ∈ 𝑈 ∧ ∀ 𝑥𝑈𝑦𝑈 ( 𝑥 ( .r𝑆 ) 𝑦 ) ∈ 𝑈 ) ) )
49 8 37 45 48 mpbir3and ( 𝜑𝑈 ∈ ( SubRing ‘ 𝑆 ) )