Step |
Hyp |
Ref |
Expression |
1 |
|
mplsubg.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
mplsubg.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
3 |
|
mplsubg.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
4 |
|
mplsubg.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
5 |
|
mpllss.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
mplsubrglem.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
7 |
|
mplsubrglem.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
8 |
|
mplsubrglem.p |
⊢ 𝐴 = ( ∘f + “ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) |
9 |
|
mplsubrglem.t |
⊢ · = ( .r ‘ 𝑅 ) |
10 |
|
mplsubrglem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
11 |
|
mplsubrglem.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
14 |
2 1 3 12
|
mplbasss |
⊢ 𝑈 ⊆ ( Base ‘ 𝑆 ) |
15 |
14 10
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
16 |
14 11
|
sselid |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑆 ) ) |
17 |
1 12 13 5 15 16
|
psrmulcl |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ ( Base ‘ 𝑆 ) ) |
18 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ V ) |
19 |
1 12
|
psrelbasfun |
⊢ ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ ( Base ‘ 𝑆 ) → Fun ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ) |
20 |
17 19
|
syl |
⊢ ( 𝜑 → Fun ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ) |
21 |
7
|
fvexi |
⊢ 0 ∈ V |
22 |
21
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
23 |
|
df-ima |
⊢ ( ∘f + “ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) = ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) |
24 |
8 23
|
eqtri |
⊢ 𝐴 = ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) |
25 |
2 1 12 7 3
|
mplelbas |
⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ 𝑋 finSupp 0 ) ) |
26 |
25
|
simprbi |
⊢ ( 𝑋 ∈ 𝑈 → 𝑋 finSupp 0 ) |
27 |
10 26
|
syl |
⊢ ( 𝜑 → 𝑋 finSupp 0 ) |
28 |
2 1 12 7 3
|
mplelbas |
⊢ ( 𝑌 ∈ 𝑈 ↔ ( 𝑌 ∈ ( Base ‘ 𝑆 ) ∧ 𝑌 finSupp 0 ) ) |
29 |
28
|
simprbi |
⊢ ( 𝑌 ∈ 𝑈 → 𝑌 finSupp 0 ) |
30 |
11 29
|
syl |
⊢ ( 𝜑 → 𝑌 finSupp 0 ) |
31 |
|
fsuppxpfi |
⊢ ( ( 𝑋 finSupp 0 ∧ 𝑌 finSupp 0 ) → ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∈ Fin ) |
32 |
27 30 31
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∈ Fin ) |
33 |
|
ofmres |
⊢ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) = ( 𝑓 ∈ ( 𝑋 supp 0 ) , 𝑔 ∈ ( 𝑌 supp 0 ) ↦ ( 𝑓 ∘f + 𝑔 ) ) |
34 |
|
ovex |
⊢ ( 𝑓 ∘f + 𝑔 ) ∈ V |
35 |
33 34
|
fnmpoi |
⊢ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) Fn ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) |
36 |
|
dffn4 |
⊢ ( ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) Fn ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ↔ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) : ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) –onto→ ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ) |
37 |
35 36
|
mpbi |
⊢ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) : ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) –onto→ ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) |
38 |
|
fofi |
⊢ ( ( ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∈ Fin ∧ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) : ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) –onto→ ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ) → ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ∈ Fin ) |
39 |
32 37 38
|
sylancl |
⊢ ( 𝜑 → ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ∈ Fin ) |
40 |
24 39
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
41 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
42 |
1 41 6 12 17
|
psrelbas |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
43 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
44 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑌 ∈ ( Base ‘ 𝑆 ) ) |
45 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) → 𝑘 ∈ 𝐷 ) |
46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑘 ∈ 𝐷 ) |
47 |
1 12 9 13 6 43 44 46
|
psrmulval |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ‘ 𝑘 ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
48 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑅 ∈ Ring ) |
49 |
2 41 3 6 11
|
mplelf |
⊢ ( 𝜑 → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
50 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
51 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ⊆ 𝐷 |
52 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑘 ∈ 𝐷 ) |
53 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
54 |
|
eqid |
⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } |
55 |
6 54
|
psrbagconcl |
⊢ ( ( 𝑘 ∈ 𝐷 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
56 |
52 53 55
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
57 |
51 56
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ) |
58 |
50 57
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) |
59 |
41 9 7
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) |
60 |
48 58 59
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 0 · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) |
61 |
|
oveq1 |
⊢ ( ( 𝑋 ‘ 𝑥 ) = 0 → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( 0 · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) |
62 |
61
|
eqeq1d |
⊢ ( ( 𝑋 ‘ 𝑥 ) = 0 → ( ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ↔ ( 0 · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) ) |
63 |
60 62
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) = 0 → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) ) |
64 |
2 41 3 6 10
|
mplelf |
⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
65 |
64
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
66 |
51 53
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∈ 𝐷 ) |
67 |
65 66
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
68 |
41 9 7
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑥 ) · 0 ) = 0 ) |
69 |
48 67 68
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) · 0 ) = 0 ) |
70 |
|
oveq2 |
⊢ ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( ( 𝑋 ‘ 𝑥 ) · 0 ) ) |
71 |
70
|
eqeq1d |
⊢ ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 → ( ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ↔ ( ( 𝑋 ‘ 𝑥 ) · 0 ) = 0 ) ) |
72 |
69 71
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) ) |
73 |
6
|
psrbagf |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 : 𝐼 ⟶ ℕ0 ) |
74 |
66 73
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
75 |
74
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑛 ) ∈ ℕ0 ) |
76 |
6
|
psrbagf |
⊢ ( 𝑘 ∈ 𝐷 → 𝑘 : 𝐼 ⟶ ℕ0 ) |
77 |
52 76
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
78 |
77
|
ffvelrnda |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑘 ‘ 𝑛 ) ∈ ℕ0 ) |
79 |
|
nn0cn |
⊢ ( ( 𝑥 ‘ 𝑛 ) ∈ ℕ0 → ( 𝑥 ‘ 𝑛 ) ∈ ℂ ) |
80 |
|
nn0cn |
⊢ ( ( 𝑘 ‘ 𝑛 ) ∈ ℕ0 → ( 𝑘 ‘ 𝑛 ) ∈ ℂ ) |
81 |
|
pncan3 |
⊢ ( ( ( 𝑥 ‘ 𝑛 ) ∈ ℂ ∧ ( 𝑘 ‘ 𝑛 ) ∈ ℂ ) → ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) = ( 𝑘 ‘ 𝑛 ) ) |
82 |
79 80 81
|
syl2an |
⊢ ( ( ( 𝑥 ‘ 𝑛 ) ∈ ℕ0 ∧ ( 𝑘 ‘ 𝑛 ) ∈ ℕ0 ) → ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) = ( 𝑘 ‘ 𝑛 ) ) |
83 |
75 78 82
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) = ( 𝑘 ‘ 𝑛 ) ) |
84 |
83
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑛 ) ) ) |
85 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝐼 ∈ 𝑊 ) |
86 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ∈ V ) |
87 |
74
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 = ( 𝑛 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) ) |
88 |
77
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑘 = ( 𝑛 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑛 ) ) ) |
89 |
85 78 75 88 87
|
offval2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) ) |
90 |
85 75 86 87 89
|
offval2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) ) ) |
91 |
84 90 88
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) = 𝑘 ) |
92 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) |
93 |
91 92
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) ∈ ( 𝐷 ∖ 𝐴 ) ) |
94 |
93
|
eldifbd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ¬ ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) ∈ 𝐴 ) |
95 |
|
ovres |
⊢ ( ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ( 𝑘 ∘f − 𝑥 ) ) = ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) ) |
96 |
|
fnovrn |
⊢ ( ( ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) Fn ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∧ 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ( 𝑘 ∘f − 𝑥 ) ) ∈ ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ) |
97 |
96 24
|
eleqtrrdi |
⊢ ( ( ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) Fn ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∧ 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ( 𝑘 ∘f − 𝑥 ) ) ∈ 𝐴 ) |
98 |
35 97
|
mp3an1 |
⊢ ( ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ( 𝑘 ∘f − 𝑥 ) ) ∈ 𝐴 ) |
99 |
95 98
|
eqeltrrd |
⊢ ( ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) ∈ 𝐴 ) |
100 |
94 99
|
nsyl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ¬ ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
101 |
|
ianor |
⊢ ( ¬ ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ↔ ( ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ∨ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
102 |
100 101
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ∨ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
103 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ) ) |
104 |
103
|
baib |
⊢ ( 𝑥 ∈ 𝐷 → ( 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ↔ ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ) ) |
105 |
66 104
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ↔ ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ) ) |
106 |
|
ssidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑋 supp 0 ) ⊆ ( 𝑋 supp 0 ) ) |
107 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
108 |
6 107
|
rabex2 |
⊢ 𝐷 ∈ V |
109 |
108
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝐷 ∈ V ) |
110 |
21
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 0 ∈ V ) |
111 |
65 106 109 110
|
suppssr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 𝑋 ‘ 𝑥 ) = 0 ) |
112 |
111
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) → ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
113 |
105 112
|
sylbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ¬ 𝑥 ∈ ( 𝑋 supp 0 ) → ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
114 |
|
eldif |
⊢ ( ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) ↔ ( ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ∧ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
115 |
114
|
baib |
⊢ ( ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 → ( ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) ↔ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
116 |
57 115
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) ↔ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
117 |
|
ssidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑌 supp 0 ) ⊆ ( 𝑌 supp 0 ) ) |
118 |
50 117 109 110
|
suppssr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) |
119 |
118
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) ) |
120 |
116 119
|
sylbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) ) |
121 |
113 120
|
orim12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ∨ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( ( 𝑋 ‘ 𝑥 ) = 0 ∨ ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) ) ) |
122 |
102 121
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) = 0 ∨ ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) ) |
123 |
63 72 122
|
mpjaod |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) |
124 |
123
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ 0 ) ) |
125 |
124
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ 0 ) ) ) |
126 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑅 ∈ Ring ) |
127 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
128 |
126 127
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑅 ∈ Mnd ) |
129 |
6
|
psrbaglefi |
⊢ ( 𝑘 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
130 |
46 129
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
131 |
7
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ 0 ) ) = 0 ) |
132 |
128 130 131
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ 0 ) ) = 0 ) |
133 |
47 125 132
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ‘ 𝑘 ) = 0 ) |
134 |
42 133
|
suppss |
⊢ ( 𝜑 → ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) supp 0 ) ⊆ 𝐴 ) |
135 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ V ∧ Fun ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∧ 0 ∈ V ) ∧ ( 𝐴 ∈ Fin ∧ ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) supp 0 ) ⊆ 𝐴 ) ) → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) finSupp 0 ) |
136 |
18 20 22 40 134 135
|
syl32anc |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) finSupp 0 ) |
137 |
2 1 12 7 3
|
mplelbas |
⊢ ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ 𝑈 ↔ ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) finSupp 0 ) ) |
138 |
17 136 137
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ 𝑈 ) |