| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplval.p |
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) |
| 2 |
|
mplval.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 3 |
|
mplval.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 4 |
|
mplval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
mplval.u |
⊢ 𝑈 = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
| 6 |
|
ovexd |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 mPwSer 𝑟 ) ∈ V ) |
| 7 |
|
id |
⊢ ( 𝑠 = ( 𝑖 mPwSer 𝑟 ) → 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) |
| 8 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑖 mPwSer 𝑟 ) = ( 𝐼 mPwSer 𝑅 ) ) |
| 9 |
7 8
|
sylan9eqr |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → 𝑠 = ( 𝐼 mPwSer 𝑅 ) ) |
| 10 |
9 2
|
eqtr4di |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → 𝑠 = 𝑆 ) |
| 11 |
10
|
fveq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
| 12 |
11 3
|
eqtr4di |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( Base ‘ 𝑠 ) = 𝐵 ) |
| 13 |
|
simplr |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → 𝑟 = 𝑅 ) |
| 14 |
13
|
fveq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
| 15 |
14 4
|
eqtr4di |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( 0g ‘ 𝑟 ) = 0 ) |
| 16 |
15
|
breq2d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( 𝑓 finSupp ( 0g ‘ 𝑟 ) ↔ 𝑓 finSupp 0 ) ) |
| 17 |
12 16
|
rabeqbidv |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } = { 𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ) |
| 18 |
17 5
|
eqtr4di |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } = 𝑈 ) |
| 19 |
10 18
|
oveq12d |
⊢ ( ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ∧ 𝑠 = ( 𝑖 mPwSer 𝑟 ) ) → ( 𝑠 ↾s { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } ) = ( 𝑆 ↾s 𝑈 ) ) |
| 20 |
6 19
|
csbied |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ⦋ ( 𝑖 mPwSer 𝑟 ) / 𝑠 ⦌ ( 𝑠 ↾s { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } ) = ( 𝑆 ↾s 𝑈 ) ) |
| 21 |
|
df-mpl |
⊢ mPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ⦋ ( 𝑖 mPwSer 𝑟 ) / 𝑠 ⦌ ( 𝑠 ↾s { 𝑓 ∈ ( Base ‘ 𝑠 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑟 ) } ) ) |
| 22 |
|
ovex |
⊢ ( 𝑆 ↾s 𝑈 ) ∈ V |
| 23 |
20 21 22
|
ovmpoa |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPoly 𝑅 ) = ( 𝑆 ↾s 𝑈 ) ) |
| 24 |
|
reldmmpl |
⊢ Rel dom mPoly |
| 25 |
24
|
ovprc |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPoly 𝑅 ) = ∅ ) |
| 26 |
|
ress0 |
⊢ ( ∅ ↾s 𝑈 ) = ∅ |
| 27 |
25 26
|
eqtr4di |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPoly 𝑅 ) = ( ∅ ↾s 𝑈 ) ) |
| 28 |
|
reldmpsr |
⊢ Rel dom mPwSer |
| 29 |
28
|
ovprc |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPwSer 𝑅 ) = ∅ ) |
| 30 |
2 29
|
eqtrid |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → 𝑆 = ∅ ) |
| 31 |
30
|
oveq1d |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑆 ↾s 𝑈 ) = ( ∅ ↾s 𝑈 ) ) |
| 32 |
27 31
|
eqtr4d |
⊢ ( ¬ ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) → ( 𝐼 mPoly 𝑅 ) = ( 𝑆 ↾s 𝑈 ) ) |
| 33 |
23 32
|
pm2.61i |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝑆 ↾s 𝑈 ) |
| 34 |
1 33
|
eqtri |
⊢ 𝑃 = ( 𝑆 ↾s 𝑈 ) |