Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
mplval2
Metamath Proof Explorer
Description: Self-referential expression for the set of multivariate polynomials.
(Contributed by Mario Carneiro , 7-Jan-2015) (Revised by Mario
Carneiro , 2-Oct-2015)
Ref
Expression
Hypotheses
mplval2.p
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 )
mplval2.s
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 )
mplval2.u
⊢ 𝑈 = ( Base ‘ 𝑃 )
Assertion
mplval2
⊢ 𝑃 = ( 𝑆 ↾s 𝑈 )
Proof
Step
Hyp
Ref
Expression
1
mplval2.p
⊢ 𝑃 = ( 𝐼 mPoly 𝑅 )
2
mplval2.s
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 )
3
mplval2.u
⊢ 𝑈 = ( Base ‘ 𝑃 )
4
eqid
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
5
eqid
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 )
6
1 2 4 5 3
mplbas
⊢ 𝑈 = { 𝑓 ∈ ( Base ‘ 𝑆 ) ∣ 𝑓 finSupp ( 0g ‘ 𝑅 ) }
7
1 2 4 5 6
mplval
⊢ 𝑃 = ( 𝑆 ↾s 𝑈 )