Database BASIC LINEAR ALGEBRA Abstract multivariate polynomials Definition and basic properties mplval2  
				
		 
		
			
		 
		Description:   Self-referential expression for the set of multivariate polynomials.
       (Contributed by Mario Carneiro , 7-Jan-2015)   (Revised by Mario
       Carneiro , 2-Oct-2015) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						mplval2.p ⊢  𝑃   =  ( 𝐼   mPoly  𝑅  )  
					
						mplval2.s ⊢  𝑆   =  ( 𝐼   mPwSer  𝑅  )  
					
						mplval2.u ⊢  𝑈   =  ( Base ‘ 𝑃  )  
				
					Assertion 
					mplval2 ⊢   𝑃   =  ( 𝑆   ↾s   𝑈  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							mplval2.p ⊢  𝑃   =  ( 𝐼   mPoly  𝑅  )  
						
							2 
								
							 
							mplval2.s ⊢  𝑆   =  ( 𝐼   mPwSer  𝑅  )  
						
							3 
								
							 
							mplval2.u ⊢  𝑈   =  ( Base ‘ 𝑃  )  
						
							4 
								
							 
							eqid ⊢  ( Base ‘ 𝑆  )  =  ( Base ‘ 𝑆  )  
						
							5 
								
							 
							eqid ⊢  ( 0g  ‘ 𝑅  )  =  ( 0g  ‘ 𝑅  )  
						
							6 
								1  2  4  5  3 
							 
							mplbas ⊢  𝑈   =  { 𝑓   ∈  ( Base ‘ 𝑆  )  ∣  𝑓   finSupp  ( 0g  ‘ 𝑅  ) }  
						
							7 
								1  2  4  5  6 
							 
							mplval ⊢  𝑃   =  ( 𝑆   ↾s   𝑈  )