Metamath Proof Explorer


Theorem mplvsca2

Description: The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mplvsca2.p 𝑃 = ( 𝐼 mPoly 𝑅 )
mplvsca2.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
mplvsca2.n · = ( ·𝑠𝑃 )
Assertion mplvsca2 · = ( ·𝑠𝑆 )

Proof

Step Hyp Ref Expression
1 mplvsca2.p 𝑃 = ( 𝐼 mPoly 𝑅 )
2 mplvsca2.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
3 mplvsca2.n · = ( ·𝑠𝑃 )
4 fvex ( Base ‘ 𝑃 ) ∈ V
5 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
6 1 2 5 mplval2 𝑃 = ( 𝑆s ( Base ‘ 𝑃 ) )
7 eqid ( ·𝑠𝑆 ) = ( ·𝑠𝑆 )
8 6 7 ressvsca ( ( Base ‘ 𝑃 ) ∈ V → ( ·𝑠𝑆 ) = ( ·𝑠𝑃 ) )
9 4 8 ax-mp ( ·𝑠𝑆 ) = ( ·𝑠𝑃 )
10 3 9 eqtr4i · = ( ·𝑠𝑆 )