| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mply1topmat.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							mply1topmat.q | 
							⊢ 𝑄  =  ( Poly1 ‘ 𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							mply1topmat.l | 
							⊢ 𝐿  =  ( Base ‘ 𝑄 )  | 
						
						
							| 4 | 
							
								
							 | 
							mply1topmat.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							mply1topmat.m | 
							⊢  ·   =  (  ·𝑠  ‘ 𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							mply1topmat.e | 
							⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							mply1topmat.y | 
							⊢ 𝑌  =  ( var1 ‘ 𝑅 )  | 
						
						
							| 8 | 
							
								
							 | 
							mply1topmat.i | 
							⊢ 𝐼  =  ( 𝑝  ∈  𝐿  ↦  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑝 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							mply1topmatcl.c | 
							⊢ 𝐶  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 10 | 
							
								
							 | 
							mply1topmatcl.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 8
							 | 
							mply1topmatval | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑂  ∈  𝐿 )  →  ( 𝐼 ‘ 𝑂 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							3adant2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝐼 ‘ 𝑂 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 )  | 
						
						
							| 14 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑁  ∈  Fin )  | 
						
						
							| 15 | 
							
								4
							 | 
							fvexi | 
							⊢ 𝑃  ∈  V  | 
						
						
							| 16 | 
							
								15
							 | 
							a1i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑃  ∈  V )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 )  | 
						
						
							| 18 | 
							
								4
							 | 
							ply1ring | 
							⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring )  | 
						
						
							| 19 | 
							
								
							 | 
							ringcmn | 
							⊢ ( 𝑃  ∈  Ring  →  𝑃  ∈  CMnd )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  CMnd )  | 
						
						
							| 21 | 
							
								20
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑃  ∈  CMnd )  | 
						
						
							| 22 | 
							
								21
							 | 
							3ad2ant1 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑃  ∈  CMnd )  | 
						
						
							| 23 | 
							
								
							 | 
							nn0ex | 
							⊢ ℕ0  ∈  V  | 
						
						
							| 24 | 
							
								23
							 | 
							a1i | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ℕ0  ∈  V )  | 
						
						
							| 25 | 
							
								4
							 | 
							ply1lmod | 
							⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  LMod )  | 
						
						
							| 26 | 
							
								25
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑃  ∈  LMod )  | 
						
						
							| 27 | 
							
								26
							 | 
							3ad2ant1 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑃  ∈  LMod )  | 
						
						
							| 28 | 
							
								27
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑃  ∈  LMod )  | 
						
						
							| 29 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 )  | 
						
						
							| 31 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑖  ∈  𝑁 )  | 
						
						
							| 32 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑗  ∈  𝑁 )  | 
						
						
							| 33 | 
							
								
							 | 
							simpl13 | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑂  ∈  𝐿 )  | 
						
						
							| 34 | 
							
								
							 | 
							eqid | 
							⊢ ( coe1 ‘ 𝑂 )  =  ( coe1 ‘ 𝑂 )  | 
						
						
							| 35 | 
							
								34 3 2 30
							 | 
							coe1f | 
							⊢ ( 𝑂  ∈  𝐿  →  ( coe1 ‘ 𝑂 ) : ℕ0 ⟶ ( Base ‘ 𝐴 ) )  | 
						
						
							| 36 | 
							
								33 35
							 | 
							syl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( coe1 ‘ 𝑂 ) : ℕ0 ⟶ ( Base ‘ 𝐴 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							ffvelcdmd | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 39 | 
							
								1 29 30 31 32 38
							 | 
							matecld | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ 𝑅 ) )  | 
						
						
							| 40 | 
							
								4
							 | 
							ply1sca | 
							⊢ ( 𝑅  ∈  Ring  →  𝑅  =  ( Scalar ‘ 𝑃 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							eqcomd | 
							⊢ ( 𝑅  ∈  Ring  →  ( Scalar ‘ 𝑃 )  =  𝑅 )  | 
						
						
							| 42 | 
							
								41
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( Scalar ‘ 𝑃 )  =  𝑅 )  | 
						
						
							| 43 | 
							
								42
							 | 
							fveq2d | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							3ad2ant1 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 46 | 
							
								39 45
							 | 
							eleqtrrd | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) ) )  | 
						
						
							| 47 | 
							
								
							 | 
							eqid | 
							⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 )  | 
						
						
							| 48 | 
							
								47 13
							 | 
							mgpbas | 
							⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( mulGrp ‘ 𝑃 ) )  | 
						
						
							| 49 | 
							
								18
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑃  ∈  Ring )  | 
						
						
							| 50 | 
							
								47
							 | 
							ringmgp | 
							⊢ ( 𝑃  ∈  Ring  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd )  | 
						
						
							| 51 | 
							
								49 50
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd )  | 
						
						
							| 52 | 
							
								51
							 | 
							3ad2ant1 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd )  | 
						
						
							| 53 | 
							
								52
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( mulGrp ‘ 𝑃 )  ∈  Mnd )  | 
						
						
							| 54 | 
							
								7 4 13
							 | 
							vr1cl | 
							⊢ ( 𝑅  ∈  Ring  →  𝑌  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  𝑌  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							3ad2ant1 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑌  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  𝑌  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 58 | 
							
								48 6 53 37 57
							 | 
							mulgnn0cld | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘 𝐸 𝑌 )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							eqid | 
							⊢ ( Scalar ‘ 𝑃 )  =  ( Scalar ‘ 𝑃 )  | 
						
						
							| 60 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) )  =  ( Base ‘ ( Scalar ‘ 𝑃 ) )  | 
						
						
							| 61 | 
							
								13 59 5 60
							 | 
							lmodvscl | 
							⊢ ( ( 𝑃  ∈  LMod  ∧  ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ∈  ( Base ‘ ( Scalar ‘ 𝑃 ) )  ∧  ( 𝑘 𝐸 𝑌 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 62 | 
							
								28 46 58 61
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							fmpttd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) : ℕ0 ⟶ ( Base ‘ 𝑃 ) )  | 
						
						
							| 64 | 
							
								1 2 3 4 5 6 7
							 | 
							mply1topmatcllem | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) )  finSupp  ( 0g ‘ 𝑃 ) )  | 
						
						
							| 65 | 
							
								13 17 22 24 63 64
							 | 
							gsumcl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) )  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 66 | 
							
								9 13 10 14 16 65
							 | 
							matbas2d | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 𝑃  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑖 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) 𝑗 )  ·  ( 𝑘 𝐸 𝑌 ) ) ) ) )  ∈  𝐵 )  | 
						
						
							| 67 | 
							
								12 66
							 | 
							eqeltrd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑂  ∈  𝐿 )  →  ( 𝐼 ‘ 𝑂 )  ∈  𝐵 )  |