| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) |
| 2 |
|
ovex |
⊢ ( 𝑥 + 𝑦 ) ∈ V |
| 3 |
1 2
|
fnmpoi |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) Fn ( ℂ × ℂ ) |
| 4 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 = ( 𝑥 + 𝑦 ) ) → 𝑥 ∈ ℂ ) |
| 5 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 = ( 𝑥 + 𝑦 ) ) → 𝑦 ∈ ℂ ) |
| 6 |
|
addcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 + 𝑦 ) ∈ ℂ ) |
| 7 |
|
eleq1a |
⊢ ( ( 𝑥 + 𝑦 ) ∈ ℂ → ( 𝑧 = ( 𝑥 + 𝑦 ) → 𝑧 ∈ ℂ ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑧 = ( 𝑥 + 𝑦 ) → 𝑧 ∈ ℂ ) ) |
| 9 |
8
|
imp |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 = ( 𝑥 + 𝑦 ) ) → 𝑧 ∈ ℂ ) |
| 10 |
4 5 9
|
3jca |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 = ( 𝑥 + 𝑦 ) ) → ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) |
| 11 |
10
|
ssoprab2i |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 = ( 𝑥 + 𝑦 ) ) } ⊆ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) } |
| 12 |
|
df-mpo |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 = ( 𝑥 + 𝑦 ) ) } |
| 13 |
|
dfxp3 |
⊢ ( ( ℂ × ℂ ) × ℂ ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) } |
| 14 |
11 12 13
|
3sstr4i |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) ⊆ ( ( ℂ × ℂ ) × ℂ ) |
| 15 |
|
dff2 |
⊢ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) : ( ℂ × ℂ ) ⟶ ℂ ↔ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) Fn ( ℂ × ℂ ) ∧ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) ⊆ ( ( ℂ × ℂ ) × ℂ ) ) ) |
| 16 |
3 14 15
|
mpbir2an |
⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 + 𝑦 ) ) : ( ℂ × ℂ ) ⟶ ℂ |