Step |
Hyp |
Ref |
Expression |
1 |
|
mpocurryd.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) |
2 |
|
mpocurryd.c |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐶 ∈ 𝑉 ) |
3 |
|
mpocurryd.n |
⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
4 |
|
df-cur |
⊢ curry 𝐹 = ( 𝑥 ∈ dom dom 𝐹 ↦ { 〈 𝑦 , 𝑧 〉 ∣ 〈 𝑥 , 𝑦 〉 𝐹 𝑧 } ) |
5 |
1
|
dmmpoga |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐶 ∈ 𝑉 → dom 𝐹 = ( 𝑋 × 𝑌 ) ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → dom 𝐹 = ( 𝑋 × 𝑌 ) ) |
7 |
6
|
dmeqd |
⊢ ( 𝜑 → dom dom 𝐹 = dom ( 𝑋 × 𝑌 ) ) |
8 |
|
dmxp |
⊢ ( 𝑌 ≠ ∅ → dom ( 𝑋 × 𝑌 ) = 𝑋 ) |
9 |
3 8
|
syl |
⊢ ( 𝜑 → dom ( 𝑋 × 𝑌 ) = 𝑋 ) |
10 |
7 9
|
eqtrd |
⊢ ( 𝜑 → dom dom 𝐹 = 𝑋 ) |
11 |
10
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom dom 𝐹 ↦ { 〈 𝑦 , 𝑧 〉 ∣ 〈 𝑥 , 𝑦 〉 𝐹 𝑧 } ) = ( 𝑥 ∈ 𝑋 ↦ { 〈 𝑦 , 𝑧 〉 ∣ 〈 𝑥 , 𝑦 〉 𝐹 𝑧 } ) ) |
12 |
|
df-mpt |
⊢ ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝐶 ) } |
13 |
1
|
mpofun |
⊢ Fun 𝐹 |
14 |
|
funbrfv2b |
⊢ ( Fun 𝐹 → ( 〈 𝑥 , 𝑦 〉 𝐹 𝑧 ↔ ( 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ) ) |
15 |
13 14
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 〈 𝑥 , 𝑦 〉 𝐹 𝑧 ↔ ( 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ) ) |
16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → dom 𝐹 = ( 𝑋 × 𝑌 ) ) |
17 |
16
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑌 ) ) ) |
18 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑋 × 𝑌 ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) |
19 |
17 18
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) ) |
20 |
19
|
anbi1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ) ) |
21 |
|
an21 |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ↔ ( 𝑦 ∈ 𝑌 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ) ) |
22 |
|
ibar |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ) ) |
23 |
22
|
bicomd |
⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ↔ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ↔ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ↔ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ) |
26 |
|
df-ov |
⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑎 𝐶 |
28 |
|
nfcv |
⊢ Ⅎ 𝑏 𝐶 |
29 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑏 |
30 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
31 |
29 30
|
nfcsbw |
⊢ Ⅎ 𝑥 ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
32 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
33 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐶 = ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
34 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑏 → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
35 |
33 34
|
sylan9eq |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝐶 = ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
36 |
27 28 31 32 35
|
cbvmpo |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) = ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑌 ↦ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
37 |
1 36
|
eqtri |
⊢ 𝐹 = ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑌 ↦ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
38 |
37
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐹 = ( 𝑎 ∈ 𝑋 , 𝑏 ∈ 𝑌 ↦ ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ) |
39 |
33
|
eqcomd |
⊢ ( 𝑥 = 𝑎 → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = 𝐶 ) |
40 |
39
|
equcoms |
⊢ ( 𝑎 = 𝑥 → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = 𝐶 ) |
41 |
40
|
csbeq2dv |
⊢ ( 𝑎 = 𝑥 → ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) |
42 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑏 → 𝐶 = ⦋ 𝑏 / 𝑦 ⦌ 𝐶 ) |
43 |
42
|
eqcomd |
⊢ ( 𝑦 = 𝑏 → ⦋ 𝑏 / 𝑦 ⦌ 𝐶 = 𝐶 ) |
44 |
43
|
equcoms |
⊢ ( 𝑏 = 𝑦 → ⦋ 𝑏 / 𝑦 ⦌ 𝐶 = 𝐶 ) |
45 |
41 44
|
sylan9eq |
⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = 𝐶 ) |
46 |
45
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) ) → ⦋ 𝑏 / 𝑦 ⦌ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = 𝐶 ) |
47 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
49 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) |
50 |
|
rsp2 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐶 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐶 ∈ 𝑉 ) ) |
51 |
2 50
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐶 ∈ 𝑉 ) ) |
52 |
51
|
impl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐶 ∈ 𝑉 ) |
53 |
38 46 48 49 52
|
ovmpod |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝑥 𝐹 𝑦 ) = 𝐶 ) |
54 |
26 53
|
eqtr3id |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝐶 ) |
55 |
54
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ↔ 𝐶 = 𝑧 ) ) |
56 |
|
eqcom |
⊢ ( 𝐶 = 𝑧 ↔ 𝑧 = 𝐶 ) |
57 |
55 56
|
bitrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ↔ 𝑧 = 𝐶 ) ) |
58 |
25 57
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ↔ 𝑧 = 𝐶 ) ) |
59 |
58
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑌 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ) ↔ ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝐶 ) ) ) |
60 |
21 59
|
syl5bb |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝐹 ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑧 ) ↔ ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝐶 ) ) ) |
61 |
15 20 60
|
3bitrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝐶 ) ↔ 〈 𝑥 , 𝑦 〉 𝐹 𝑧 ) ) |
62 |
61
|
opabbidv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝐶 ) } = { 〈 𝑦 , 𝑧 〉 ∣ 〈 𝑥 , 𝑦 〉 𝐹 𝑧 } ) |
63 |
12 62
|
eqtr2id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → { 〈 𝑦 , 𝑧 〉 ∣ 〈 𝑥 , 𝑦 〉 𝐹 𝑧 } = ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) |
64 |
63
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ { 〈 𝑦 , 𝑧 〉 ∣ 〈 𝑥 , 𝑦 〉 𝐹 𝑧 } ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ) |
65 |
11 64
|
eqtrd |
⊢ ( 𝜑 → ( 𝑥 ∈ dom dom 𝐹 ↦ { 〈 𝑦 , 𝑧 〉 ∣ 〈 𝑥 , 𝑦 〉 𝐹 𝑧 } ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ) |
66 |
4 65
|
eqtrid |
⊢ ( 𝜑 → curry 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ) |