| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mpocurryd.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝑋 ,  𝑦  ∈  𝑌  ↦  𝐶 ) | 
						
							| 2 |  | mpocurryd.c | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 𝐶  ∈  𝑉 ) | 
						
							| 3 |  | mpocurryd.n | ⊢ ( 𝜑  →  𝑌  ≠  ∅ ) | 
						
							| 4 |  | mpocurryvald.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑊 ) | 
						
							| 5 |  | mpocurryvald.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 6 | 1 2 3 | mpocurryd | ⊢ ( 𝜑  →  curry  𝐹  =  ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐶 ) ) ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑎 ( 𝑦  ∈  𝑌  ↦  𝐶 ) | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 𝑌 | 
						
							| 9 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑎  /  𝑥 ⦌ 𝐶 | 
						
							| 10 | 8 9 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑦  ∈  𝑌  ↦  ⦋ 𝑎  /  𝑥 ⦌ 𝐶 ) | 
						
							| 11 |  | csbeq1a | ⊢ ( 𝑥  =  𝑎  →  𝐶  =  ⦋ 𝑎  /  𝑥 ⦌ 𝐶 ) | 
						
							| 12 | 11 | mpteq2dv | ⊢ ( 𝑥  =  𝑎  →  ( 𝑦  ∈  𝑌  ↦  𝐶 )  =  ( 𝑦  ∈  𝑌  ↦  ⦋ 𝑎  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 13 | 7 10 12 | cbvmpt | ⊢ ( 𝑥  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  𝐶 ) )  =  ( 𝑎  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  ⦋ 𝑎  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 14 | 6 13 | eqtrdi | ⊢ ( 𝜑  →  curry  𝐹  =  ( 𝑎  ∈  𝑋  ↦  ( 𝑦  ∈  𝑌  ↦  ⦋ 𝑎  /  𝑥 ⦌ 𝐶 ) ) ) | 
						
							| 15 |  | csbeq1 | ⊢ ( 𝑎  =  𝐴  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  =  𝐴 )  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐶  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) | 
						
							| 17 | 16 | mpteq2dv | ⊢ ( ( 𝜑  ∧  𝑎  =  𝐴 )  →  ( 𝑦  ∈  𝑌  ↦  ⦋ 𝑎  /  𝑥 ⦌ 𝐶 )  =  ( 𝑦  ∈  𝑌  ↦  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 18 | 4 | mptexd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑌  ↦  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 )  ∈  V ) | 
						
							| 19 | 14 17 5 18 | fvmptd | ⊢ ( 𝜑  →  ( curry  𝐹 ‘ 𝐴 )  =  ( 𝑦  ∈  𝑌  ↦  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) |