Step |
Hyp |
Ref |
Expression |
1 |
|
mpocurryd.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) |
2 |
|
mpocurryd.c |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐶 ∈ 𝑉 ) |
3 |
|
mpocurryd.n |
⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
4 |
|
mpocurryvald.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑊 ) |
5 |
|
mpocurryvald.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
6 |
1 2 3
|
mpocurryd |
⊢ ( 𝜑 → curry 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑎 ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑌 |
9 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑎 / 𝑥 ⦌ 𝐶 |
10 |
8 9
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝑌 ↦ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
11 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑎 → 𝐶 = ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) |
12 |
11
|
mpteq2dv |
⊢ ( 𝑥 = 𝑎 → ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) = ( 𝑦 ∈ 𝑌 ↦ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ) |
13 |
7 10 12
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ) |
14 |
6 13
|
eqtrdi |
⊢ ( 𝜑 → curry 𝐹 = ( 𝑎 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) ) ) |
15 |
|
csbeq1 |
⊢ ( 𝑎 = 𝐴 → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 = 𝐴 ) → ⦋ 𝑎 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
17 |
16
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ 𝑎 = 𝐴 ) → ( 𝑦 ∈ 𝑌 ↦ ⦋ 𝑎 / 𝑥 ⦌ 𝐶 ) = ( 𝑦 ∈ 𝑌 ↦ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
18 |
4
|
mptexd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑌 ↦ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ∈ V ) |
19 |
14 17 5 18
|
fvmptd |
⊢ ( 𝜑 → ( curry 𝐹 ‘ 𝐴 ) = ( 𝑦 ∈ 𝑌 ↦ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |