Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | mpodifsnif | ⊢ ( 𝑖 ∈ ( 𝐴 ∖ { 𝑋 } ) , 𝑗 ∈ 𝐵 ↦ if ( 𝑖 = 𝑋 , 𝐶 , 𝐷 ) ) = ( 𝑖 ∈ ( 𝐴 ∖ { 𝑋 } ) , 𝑗 ∈ 𝐵 ↦ 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsnneq | ⊢ ( 𝑖 ∈ ( 𝐴 ∖ { 𝑋 } ) → ¬ 𝑖 = 𝑋 ) | |
2 | 1 | adantr | ⊢ ( ( 𝑖 ∈ ( 𝐴 ∖ { 𝑋 } ) ∧ 𝑗 ∈ 𝐵 ) → ¬ 𝑖 = 𝑋 ) |
3 | 2 | iffalsed | ⊢ ( ( 𝑖 ∈ ( 𝐴 ∖ { 𝑋 } ) ∧ 𝑗 ∈ 𝐵 ) → if ( 𝑖 = 𝑋 , 𝐶 , 𝐷 ) = 𝐷 ) |
4 | 3 | mpoeq3ia | ⊢ ( 𝑖 ∈ ( 𝐴 ∖ { 𝑋 } ) , 𝑗 ∈ 𝐵 ↦ if ( 𝑖 = 𝑋 , 𝐶 , 𝐷 ) ) = ( 𝑖 ∈ ( 𝐴 ∖ { 𝑋 } ) , 𝑗 ∈ 𝐵 ↦ 𝐷 ) |