Metamath Proof Explorer


Theorem mpodifsnif

Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019)

Ref Expression
Assertion mpodifsnif ( 𝑖 ∈ ( 𝐴 ∖ { 𝑋 } ) , 𝑗𝐵 ↦ if ( 𝑖 = 𝑋 , 𝐶 , 𝐷 ) ) = ( 𝑖 ∈ ( 𝐴 ∖ { 𝑋 } ) , 𝑗𝐵𝐷 )

Proof

Step Hyp Ref Expression
1 eldifsnneq ( 𝑖 ∈ ( 𝐴 ∖ { 𝑋 } ) → ¬ 𝑖 = 𝑋 )
2 1 adantr ( ( 𝑖 ∈ ( 𝐴 ∖ { 𝑋 } ) ∧ 𝑗𝐵 ) → ¬ 𝑖 = 𝑋 )
3 2 iffalsed ( ( 𝑖 ∈ ( 𝐴 ∖ { 𝑋 } ) ∧ 𝑗𝐵 ) → if ( 𝑖 = 𝑋 , 𝐶 , 𝐷 ) = 𝐷 )
4 3 mpoeq3ia ( 𝑖 ∈ ( 𝐴 ∖ { 𝑋 } ) , 𝑗𝐵 ↦ if ( 𝑖 = 𝑋 , 𝐶 , 𝐷 ) ) = ( 𝑖 ∈ ( 𝐴 ∖ { 𝑋 } ) , 𝑗𝐵𝐷 )