Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | mpoeq12 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐸 ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ 𝐸 = 𝐸 | |
2 | 1 | rgenw | ⊢ ∀ 𝑦 ∈ 𝐵 𝐸 = 𝐸 |
3 | 2 | jctr | ⊢ ( 𝐵 = 𝐷 → ( 𝐵 = 𝐷 ∧ ∀ 𝑦 ∈ 𝐵 𝐸 = 𝐸 ) ) |
4 | 3 | ralrimivw | ⊢ ( 𝐵 = 𝐷 → ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐷 ∧ ∀ 𝑦 ∈ 𝐵 𝐸 = 𝐸 ) ) |
5 | mpoeq123 | ⊢ ( ( 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐷 ∧ ∀ 𝑦 ∈ 𝐵 𝐸 = 𝐸 ) ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐸 ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) | |
6 | 4 5 | sylan2 | ⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐸 ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) |