Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 = 𝐷 |
2 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) |
3 |
1 2
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) |
4 |
|
nfv |
⊢ Ⅎ 𝑦 𝐴 = 𝐷 |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
6 |
|
nfv |
⊢ Ⅎ 𝑦 𝐵 = 𝐸 |
7 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 |
8 |
6 7
|
nfan |
⊢ Ⅎ 𝑦 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) |
9 |
5 8
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) |
10 |
4 9
|
nfan |
⊢ Ⅎ 𝑦 ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) |
11 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) |
12 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) → ( 𝑥 ∈ 𝐴 → ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) ) |
13 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 → ( 𝑦 ∈ 𝐵 → 𝐶 = 𝐹 ) ) |
14 |
|
eqeq2 |
⊢ ( 𝐶 = 𝐹 → ( 𝑧 = 𝐶 ↔ 𝑧 = 𝐹 ) ) |
15 |
13 14
|
syl6 |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 → ( 𝑦 ∈ 𝐵 → ( 𝑧 = 𝐶 ↔ 𝑧 = 𝐹 ) ) ) |
16 |
15
|
pm5.32d |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐹 ) ) ) |
17 |
|
eleq2 |
⊢ ( 𝐵 = 𝐸 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐸 ) ) |
18 |
17
|
anbi1d |
⊢ ( 𝐵 = 𝐸 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐹 ) ↔ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ) |
19 |
16 18
|
sylan9bbr |
⊢ ( ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ) |
20 |
12 19
|
syl6 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) → ( 𝑥 ∈ 𝐴 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ) ) |
21 |
20
|
pm5.32d |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ) ) |
22 |
|
eleq2 |
⊢ ( 𝐴 = 𝐷 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐷 ) ) |
23 |
22
|
anbi1d |
⊢ ( 𝐴 = 𝐷 → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ) ) |
24 |
21 23
|
sylan9bbr |
⊢ ( ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ) ) |
25 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 = 𝐶 ) ) ) |
26 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 = 𝐹 ) ↔ ( 𝑥 ∈ 𝐷 ∧ ( 𝑦 ∈ 𝐸 ∧ 𝑧 = 𝐹 ) ) ) |
27 |
24 25 26
|
3bitr4g |
⊢ ( ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 = 𝐹 ) ) ) |
28 |
3 10 11 27
|
oprabbid |
⊢ ( ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 = 𝐹 ) } ) |
29 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } |
30 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐷 , 𝑦 ∈ 𝐸 ↦ 𝐹 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 = 𝐹 ) } |
31 |
28 29 30
|
3eqtr4g |
⊢ ( ( 𝐴 = 𝐷 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐵 = 𝐸 ∧ ∀ 𝑦 ∈ 𝐵 𝐶 = 𝐹 ) ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐷 , 𝑦 ∈ 𝐸 ↦ 𝐹 ) ) |