Step |
Hyp |
Ref |
Expression |
1 |
|
mpoeq123dv.1 |
⊢ ( 𝜑 → 𝐴 = 𝐷 ) |
2 |
|
mpoeq123dva.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐸 ) |
3 |
|
mpoeq123dva.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 = 𝐹 ) |
4 |
3
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 = 𝐶 ↔ 𝑧 = 𝐹 ) ) |
5 |
4
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐹 ) ) ) |
6 |
2
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐸 ) ) |
7 |
6
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐸 ) ) ) |
8 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐷 ) ) |
9 |
8
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐸 ) ↔ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ) ) |
10 |
7 9
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ) ) |
11 |
10
|
anbi1d |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐹 ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 = 𝐹 ) ) ) |
12 |
5 11
|
bitrd |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 = 𝐹 ) ) ) |
13 |
12
|
oprabbidv |
⊢ ( 𝜑 → { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 = 𝐹 ) } ) |
14 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } |
15 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐷 , 𝑦 ∈ 𝐸 ↦ 𝐹 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ∧ 𝑧 = 𝐹 ) } |
16 |
13 14 15
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐷 , 𝑦 ∈ 𝐸 ↦ 𝐹 ) ) |