Metamath Proof Explorer


Theorem mpoeq123dva

Description: An equality deduction for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses mpoeq123dv.1 ( 𝜑𝐴 = 𝐷 )
mpoeq123dva.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐸 )
mpoeq123dva.3 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝐶 = 𝐹 )
Assertion mpoeq123dva ( 𝜑 → ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑥𝐷 , 𝑦𝐸𝐹 ) )

Proof

Step Hyp Ref Expression
1 mpoeq123dv.1 ( 𝜑𝐴 = 𝐷 )
2 mpoeq123dva.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐸 )
3 mpoeq123dva.3 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝐶 = 𝐹 )
4 3 eqeq2d ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝑧 = 𝐶𝑧 = 𝐹 ) )
5 4 pm5.32da ( 𝜑 → ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐹 ) ) )
6 2 eleq2d ( ( 𝜑𝑥𝐴 ) → ( 𝑦𝐵𝑦𝐸 ) )
7 6 pm5.32da ( 𝜑 → ( ( 𝑥𝐴𝑦𝐵 ) ↔ ( 𝑥𝐴𝑦𝐸 ) ) )
8 1 eleq2d ( 𝜑 → ( 𝑥𝐴𝑥𝐷 ) )
9 8 anbi1d ( 𝜑 → ( ( 𝑥𝐴𝑦𝐸 ) ↔ ( 𝑥𝐷𝑦𝐸 ) ) )
10 7 9 bitrd ( 𝜑 → ( ( 𝑥𝐴𝑦𝐵 ) ↔ ( 𝑥𝐷𝑦𝐸 ) ) )
11 10 anbi1d ( 𝜑 → ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐹 ) ↔ ( ( 𝑥𝐷𝑦𝐸 ) ∧ 𝑧 = 𝐹 ) ) )
12 5 11 bitrd ( 𝜑 → ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ( ( 𝑥𝐷𝑦𝐸 ) ∧ 𝑧 = 𝐹 ) ) )
13 12 oprabbidv ( 𝜑 → { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) } = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐷𝑦𝐸 ) ∧ 𝑧 = 𝐹 ) } )
14 df-mpo ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }
15 df-mpo ( 𝑥𝐷 , 𝑦𝐸𝐹 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐷𝑦𝐸 ) ∧ 𝑧 = 𝐹 ) }
16 13 14 15 3eqtr4g ( 𝜑 → ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑥𝐷 , 𝑦𝐸𝐹 ) )