Metamath Proof Explorer


Theorem mpoeq3ia

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013)

Ref Expression
Hypothesis mpoeq3ia.1 ( ( 𝑥𝐴𝑦𝐵 ) → 𝐶 = 𝐷 )
Assertion mpoeq3ia ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑥𝐴 , 𝑦𝐵𝐷 )

Proof

Step Hyp Ref Expression
1 mpoeq3ia.1 ( ( 𝑥𝐴𝑦𝐵 ) → 𝐶 = 𝐷 )
2 1 3adant1 ( ( ⊤ ∧ 𝑥𝐴𝑦𝐵 ) → 𝐶 = 𝐷 )
3 2 mpoeq3dva ( ⊤ → ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑥𝐴 , 𝑦𝐵𝐷 ) )
4 3 mptru ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑥𝐴 , 𝑦𝐵𝐷 )