| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpoexw.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
mpoexw.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
mpoexw.3 |
⊢ 𝐷 ∈ V |
| 4 |
|
mpoexw.4 |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 |
| 5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
| 6 |
5
|
mpofun |
⊢ Fun ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
| 7 |
5
|
dmmpoga |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 → dom ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝐴 × 𝐵 ) ) |
| 8 |
4 7
|
ax-mp |
⊢ dom ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝐴 × 𝐵 ) |
| 9 |
1 2
|
xpex |
⊢ ( 𝐴 × 𝐵 ) ∈ V |
| 10 |
8 9
|
eqeltri |
⊢ dom ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V |
| 11 |
5
|
rnmpo |
⊢ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 } |
| 12 |
4
|
rspec |
⊢ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐷 ) |
| 13 |
12
|
r19.21bi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝐶 ∈ 𝐷 ) |
| 14 |
|
eleq1a |
⊢ ( 𝐶 ∈ 𝐷 → ( 𝑧 = 𝐶 → 𝑧 ∈ 𝐷 ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 = 𝐶 → 𝑧 ∈ 𝐷 ) ) |
| 16 |
15
|
rexlimdva |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷 ) ) |
| 17 |
16
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝑧 ∈ 𝐷 ) |
| 18 |
17
|
abssi |
⊢ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 } ⊆ 𝐷 |
| 19 |
3 18
|
ssexi |
⊢ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 } ∈ V |
| 20 |
11 19
|
eqeltri |
⊢ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V |
| 21 |
|
funexw |
⊢ ( ( Fun ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∧ dom ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V ∧ ran ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V ) → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V ) |
| 22 |
6 10 20 21
|
mp3an |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ∈ V |