Step |
Hyp |
Ref |
Expression |
1 |
|
mpoexg.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
2 |
1
|
mpofun |
⊢ Fun 𝐹 |
3 |
1
|
dmmpossx |
⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) |
4 |
|
snex |
⊢ { 𝑥 } ∈ V |
5 |
|
xpexg |
⊢ ( ( { 𝑥 } ∈ V ∧ 𝐵 ∈ 𝑆 ) → ( { 𝑥 } × 𝐵 ) ∈ V ) |
6 |
4 5
|
mpan |
⊢ ( 𝐵 ∈ 𝑆 → ( { 𝑥 } × 𝐵 ) ∈ V ) |
7 |
6
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 → ∀ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ V ) |
8 |
|
iunexg |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ ∀ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ V ) → ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ V ) |
9 |
7 8
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ) → ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ V ) |
10 |
|
ssexg |
⊢ ( ( dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∧ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ∈ V ) → dom 𝐹 ∈ V ) |
11 |
3 9 10
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ) → dom 𝐹 ∈ V ) |
12 |
|
funex |
⊢ ( ( Fun 𝐹 ∧ dom 𝐹 ∈ V ) → 𝐹 ∈ V ) |
13 |
2 11 12
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑆 ) → 𝐹 ∈ V ) |