Metamath Proof Explorer


Theorem mpoexxg

Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypothesis mpoexg.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
Assertion mpoexxg ( ( 𝐴𝑅 ∧ ∀ 𝑥𝐴 𝐵𝑆 ) → 𝐹 ∈ V )

Proof

Step Hyp Ref Expression
1 mpoexg.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 1 mpofun Fun 𝐹
3 1 dmmpossx dom 𝐹 𝑥𝐴 ( { 𝑥 } × 𝐵 )
4 snex { 𝑥 } ∈ V
5 xpexg ( ( { 𝑥 } ∈ V ∧ 𝐵𝑆 ) → ( { 𝑥 } × 𝐵 ) ∈ V )
6 4 5 mpan ( 𝐵𝑆 → ( { 𝑥 } × 𝐵 ) ∈ V )
7 6 ralimi ( ∀ 𝑥𝐴 𝐵𝑆 → ∀ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∈ V )
8 iunexg ( ( 𝐴𝑅 ∧ ∀ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∈ V ) → 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∈ V )
9 7 8 sylan2 ( ( 𝐴𝑅 ∧ ∀ 𝑥𝐴 𝐵𝑆 ) → 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∈ V )
10 ssexg ( ( dom 𝐹 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∧ 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ∈ V ) → dom 𝐹 ∈ V )
11 3 9 10 sylancr ( ( 𝐴𝑅 ∧ ∀ 𝑥𝐴 𝐵𝑆 ) → dom 𝐹 ∈ V )
12 funex ( ( Fun 𝐹 ∧ dom 𝐹 ∈ V ) → 𝐹 ∈ V )
13 2 11 12 sylancr ( ( 𝐴𝑅 ∧ ∀ 𝑥𝐴 𝐵𝑆 ) → 𝐹 ∈ V )