Step |
Hyp |
Ref |
Expression |
1 |
|
mpofrlmd.f |
⊢ 𝐹 = ( 𝑅 freeLMod ( 𝑁 × 𝑀 ) ) |
2 |
|
mpofrlmd.v |
⊢ 𝑉 = ( Base ‘ 𝐹 ) |
3 |
|
mpofrlmd.s |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → 𝐴 = 𝐵 ) |
4 |
|
mpofrlmd.a |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑀 ) → 𝐴 ∈ 𝑋 ) |
5 |
|
mpofrlmd.b |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑀 ) → 𝐵 ∈ 𝑌 ) |
6 |
|
mpofrlmd.e |
⊢ ( 𝜑 → ( 𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) ) |
7 |
|
xpexg |
⊢ ( ( 𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ) → ( 𝑁 × 𝑀 ) ∈ V ) |
8 |
7
|
anim1i |
⊢ ( ( ( 𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ) ∧ 𝑍 ∈ 𝑉 ) → ( ( 𝑁 × 𝑀 ) ∈ V ∧ 𝑍 ∈ 𝑉 ) ) |
9 |
8
|
3impa |
⊢ ( ( 𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉 ) → ( ( 𝑁 × 𝑀 ) ∈ V ∧ 𝑍 ∈ 𝑉 ) ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 × 𝑀 ) ∈ V ∧ 𝑍 ∈ 𝑉 ) ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
12 |
1 11 2
|
frlmbasf |
⊢ ( ( ( 𝑁 × 𝑀 ) ∈ V ∧ 𝑍 ∈ 𝑉 ) → 𝑍 : ( 𝑁 × 𝑀 ) ⟶ ( Base ‘ 𝑅 ) ) |
13 |
|
ffn |
⊢ ( 𝑍 : ( 𝑁 × 𝑀 ) ⟶ ( Base ‘ 𝑅 ) → 𝑍 Fn ( 𝑁 × 𝑀 ) ) |
14 |
10 12 13
|
3syl |
⊢ ( 𝜑 → 𝑍 Fn ( 𝑁 × 𝑀 ) ) |
15 |
14 3 4 5
|
fnmpoovd |
⊢ ( 𝜑 → ( 𝑍 = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑀 ↦ 𝐵 ) ↔ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑀 ( 𝑖 𝑍 𝑗 ) = 𝐴 ) ) |