Metamath Proof Explorer


Theorem mpofrlmd

Description: Elements of the free module are mappings with two arguments defined by their operation values. (Contributed by AV, 20-Feb-2019) (Proof shortened by AV, 3-Jul-2022)

Ref Expression
Hypotheses mpofrlmd.f 𝐹 = ( 𝑅 freeLMod ( 𝑁 × 𝑀 ) )
mpofrlmd.v 𝑉 = ( Base ‘ 𝐹 )
mpofrlmd.s ( ( 𝑖 = 𝑎𝑗 = 𝑏 ) → 𝐴 = 𝐵 )
mpofrlmd.a ( ( 𝜑𝑖𝑁𝑗𝑀 ) → 𝐴𝑋 )
mpofrlmd.b ( ( 𝜑𝑎𝑁𝑏𝑀 ) → 𝐵𝑌 )
mpofrlmd.e ( 𝜑 → ( 𝑁𝑈𝑀𝑊𝑍𝑉 ) )
Assertion mpofrlmd ( 𝜑 → ( 𝑍 = ( 𝑎𝑁 , 𝑏𝑀𝐵 ) ↔ ∀ 𝑖𝑁𝑗𝑀 ( 𝑖 𝑍 𝑗 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 mpofrlmd.f 𝐹 = ( 𝑅 freeLMod ( 𝑁 × 𝑀 ) )
2 mpofrlmd.v 𝑉 = ( Base ‘ 𝐹 )
3 mpofrlmd.s ( ( 𝑖 = 𝑎𝑗 = 𝑏 ) → 𝐴 = 𝐵 )
4 mpofrlmd.a ( ( 𝜑𝑖𝑁𝑗𝑀 ) → 𝐴𝑋 )
5 mpofrlmd.b ( ( 𝜑𝑎𝑁𝑏𝑀 ) → 𝐵𝑌 )
6 mpofrlmd.e ( 𝜑 → ( 𝑁𝑈𝑀𝑊𝑍𝑉 ) )
7 xpexg ( ( 𝑁𝑈𝑀𝑊 ) → ( 𝑁 × 𝑀 ) ∈ V )
8 7 anim1i ( ( ( 𝑁𝑈𝑀𝑊 ) ∧ 𝑍𝑉 ) → ( ( 𝑁 × 𝑀 ) ∈ V ∧ 𝑍𝑉 ) )
9 8 3impa ( ( 𝑁𝑈𝑀𝑊𝑍𝑉 ) → ( ( 𝑁 × 𝑀 ) ∈ V ∧ 𝑍𝑉 ) )
10 6 9 syl ( 𝜑 → ( ( 𝑁 × 𝑀 ) ∈ V ∧ 𝑍𝑉 ) )
11 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
12 1 11 2 frlmbasf ( ( ( 𝑁 × 𝑀 ) ∈ V ∧ 𝑍𝑉 ) → 𝑍 : ( 𝑁 × 𝑀 ) ⟶ ( Base ‘ 𝑅 ) )
13 ffn ( 𝑍 : ( 𝑁 × 𝑀 ) ⟶ ( Base ‘ 𝑅 ) → 𝑍 Fn ( 𝑁 × 𝑀 ) )
14 10 12 13 3syl ( 𝜑𝑍 Fn ( 𝑁 × 𝑀 ) )
15 14 3 4 5 fnmpoovd ( 𝜑 → ( 𝑍 = ( 𝑎𝑁 , 𝑏𝑀𝐵 ) ↔ ∀ 𝑖𝑁𝑗𝑀 ( 𝑖 𝑍 𝑗 ) = 𝐴 ) )