Metamath Proof Explorer


Theorem mpofunOLD

Description: Obsolete version of mpofun as of 23-Jul-2024. (Contributed by Scott Fenton, 21-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis mpofun.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
Assertion mpofunOLD Fun 𝐹

Proof

Step Hyp Ref Expression
1 mpofun.1 𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
2 eqtr3 ( ( 𝑧 = 𝐶𝑤 = 𝐶 ) → 𝑧 = 𝑤 )
3 2 ad2ant2l ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) ∧ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑤 = 𝐶 ) ) → 𝑧 = 𝑤 )
4 3 gen2 𝑧𝑤 ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) ∧ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑤 = 𝐶 ) ) → 𝑧 = 𝑤 )
5 eqeq1 ( 𝑧 = 𝑤 → ( 𝑧 = 𝐶𝑤 = 𝐶 ) )
6 5 anbi2d ( 𝑧 = 𝑤 → ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑤 = 𝐶 ) ) )
7 6 mo4 ( ∃* 𝑧 ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ∀ 𝑧𝑤 ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) ∧ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑤 = 𝐶 ) ) → 𝑧 = 𝑤 ) )
8 4 7 mpbir ∃* 𝑧 ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 )
9 8 funoprab Fun { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }
10 df-mpo ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }
11 1 10 eqtri 𝐹 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) }
12 11 funeqi ( Fun 𝐹 ↔ Fun { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑧 = 𝐶 ) } )
13 9 12 mpbir Fun 𝐹