Step |
Hyp |
Ref |
Expression |
1 |
|
mpofun.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
2 |
|
eqtr3 |
⊢ ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐶 ) → 𝑧 = 𝑤 ) |
3 |
2
|
ad2ant2l |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐶 ) ) → 𝑧 = 𝑤 ) |
4 |
3
|
gen2 |
⊢ ∀ 𝑧 ∀ 𝑤 ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐶 ) ) → 𝑧 = 𝑤 ) |
5 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = 𝐶 ↔ 𝑤 = 𝐶 ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐶 ) ) ) |
7 |
6
|
mo4 |
⊢ ( ∃* 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑤 = 𝐶 ) ) → 𝑧 = 𝑤 ) ) |
8 |
4 7
|
mpbir |
⊢ ∃* 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) |
9 |
8
|
funoprab |
⊢ Fun { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } |
10 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } |
11 |
1 10
|
eqtri |
⊢ 𝐹 = { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } |
12 |
11
|
funeqi |
⊢ ( Fun 𝐹 ↔ Fun { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 = 𝐶 ) } ) |
13 |
9 12
|
mpbir |
⊢ Fun 𝐹 |