| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mpomatmul.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mpomatmul.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | mpomatmul.m | ⊢  ×   =  ( .r ‘ 𝐴 ) | 
						
							| 4 |  | mpomatmul.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 5 |  | mpomatmul.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑉 ) | 
						
							| 6 |  | mpomatmul.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 7 |  | mpomatmul.x | ⊢ 𝑋  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  𝐶 ) | 
						
							| 8 |  | mpomatmul.y | ⊢ 𝑌  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  𝐸 ) | 
						
							| 9 |  | mpomatmul.c | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝐶  ∈  𝐵 ) | 
						
							| 10 |  | mpomatmul.e | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝐸  ∈  𝐵 ) | 
						
							| 11 |  | mpomatmul.d | ⊢ ( ( 𝜑  ∧  ( 𝑘  =  𝑖  ∧  𝑚  =  𝑗 ) )  →  𝐷  =  𝐶 ) | 
						
							| 12 |  | mpomatmul.f | ⊢ ( ( 𝜑  ∧  ( 𝑚  =  𝑖  ∧  𝑙  =  𝑗 ) )  →  𝐹  =  𝐸 ) | 
						
							| 13 |  | mpomatmul.1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑚  ∈  𝑁 )  →  𝐷  ∈  𝑈 ) | 
						
							| 14 |  | mpomatmul.2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  𝐹  ∈  𝑊 ) | 
						
							| 15 |  | eqid | ⊢ ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 )  =  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) | 
						
							| 16 | 1 15 | matmulr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 )  =  ( .r ‘ 𝐴 ) ) | 
						
							| 17 | 16 3 | eqtr4di | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 )  =   ×  ) | 
						
							| 18 | 17 | oveqd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑋 ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) 𝑌 )  =  ( 𝑋  ×  𝑌 ) ) | 
						
							| 19 | 18 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑋  ×  𝑌 )  =  ( 𝑋 ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) 𝑌 ) ) | 
						
							| 20 | 6 5 19 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋  ×  𝑌 )  =  ( 𝑋 ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) 𝑌 ) ) | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 23 | 9 2 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝐶  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 24 | 1 21 22 6 5 23 | matbas2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  𝐶 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 25 | 7 24 | eqeltrid | ⊢ ( 𝜑  →  𝑋  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 26 | 1 21 | matbas2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 27 | 6 5 26 | syl2anc | ⊢ ( 𝜑  →  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 28 | 25 27 | eleqtrrd | ⊢ ( 𝜑  →  𝑋  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 29 | 10 2 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝐸  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 30 | 1 21 22 6 5 29 | matbas2d | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  𝐸 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 31 | 8 30 | eqeltrid | ⊢ ( 𝜑  →  𝑌  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 32 | 31 27 | eleqtrrd | ⊢ ( 𝜑  →  𝑌  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( 𝑁  ×  𝑁 ) ) ) | 
						
							| 33 | 15 21 4 5 6 6 6 28 32 | mamuval | ⊢ ( 𝜑  →  ( 𝑋 ( 𝑅  maMul  〈 𝑁 ,  𝑁 ,  𝑁 〉 ) 𝑌 )  =  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑘 𝑋 𝑚 )  ·  ( 𝑚 𝑌 𝑙 ) ) ) ) ) ) | 
						
							| 34 | 7 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑋  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  𝐶 ) ) | 
						
							| 35 |  | equcom | ⊢ ( 𝑖  =  𝑘  ↔  𝑘  =  𝑖 ) | 
						
							| 36 |  | equcom | ⊢ ( 𝑗  =  𝑚  ↔  𝑚  =  𝑗 ) | 
						
							| 37 | 35 36 | anbi12i | ⊢ ( ( 𝑖  =  𝑘  ∧  𝑗  =  𝑚 )  ↔  ( 𝑘  =  𝑖  ∧  𝑚  =  𝑗 ) ) | 
						
							| 38 | 37 11 | sylan2b | ⊢ ( ( 𝜑  ∧  ( 𝑖  =  𝑘  ∧  𝑗  =  𝑚 ) )  →  𝐷  =  𝐶 ) | 
						
							| 39 | 38 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑖  =  𝑘  ∧  𝑗  =  𝑚 ) )  →  𝐶  =  𝐷 ) | 
						
							| 40 | 39 | ex | ⊢ ( 𝜑  →  ( ( 𝑖  =  𝑘  ∧  𝑗  =  𝑚 )  →  𝐶  =  𝐷 ) ) | 
						
							| 41 | 40 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( ( 𝑖  =  𝑘  ∧  𝑗  =  𝑚 )  →  𝐶  =  𝐷 ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  ( ( 𝑖  =  𝑘  ∧  𝑗  =  𝑚 )  →  𝐶  =  𝐷 ) ) | 
						
							| 43 | 42 | imp | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  ∧  ( 𝑖  =  𝑘  ∧  𝑗  =  𝑚 ) )  →  𝐶  =  𝐷 ) | 
						
							| 44 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑘  ∈  𝑁 ) | 
						
							| 45 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑚  ∈  𝑁 ) | 
						
							| 46 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝜑 ) | 
						
							| 47 | 46 44 45 13 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝐷  ∈  𝑈 ) | 
						
							| 48 | 34 43 44 45 47 | ovmpod | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  ( 𝑘 𝑋 𝑚 )  =  𝐷 ) | 
						
							| 49 | 8 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑌  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  𝐸 ) ) | 
						
							| 50 |  | equcomi | ⊢ ( 𝑖  =  𝑚  →  𝑚  =  𝑖 ) | 
						
							| 51 |  | equcomi | ⊢ ( 𝑗  =  𝑙  →  𝑙  =  𝑗 ) | 
						
							| 52 | 50 51 | anim12i | ⊢ ( ( 𝑖  =  𝑚  ∧  𝑗  =  𝑙 )  →  ( 𝑚  =  𝑖  ∧  𝑙  =  𝑗 ) ) | 
						
							| 53 | 52 12 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑖  =  𝑚  ∧  𝑗  =  𝑙 ) )  →  𝐹  =  𝐸 ) | 
						
							| 54 | 53 | ex | ⊢ ( 𝜑  →  ( ( 𝑖  =  𝑚  ∧  𝑗  =  𝑙 )  →  𝐹  =  𝐸 ) ) | 
						
							| 55 | 54 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( ( 𝑖  =  𝑚  ∧  𝑗  =  𝑙 )  →  𝐹  =  𝐸 ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  ( ( 𝑖  =  𝑚  ∧  𝑗  =  𝑙 )  →  𝐹  =  𝐸 ) ) | 
						
							| 57 | 56 | imp | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  ∧  ( 𝑖  =  𝑚  ∧  𝑗  =  𝑙 ) )  →  𝐹  =  𝐸 ) | 
						
							| 58 | 57 | eqcomd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  ∧  ( 𝑖  =  𝑚  ∧  𝑗  =  𝑙 ) )  →  𝐸  =  𝐹 ) | 
						
							| 59 |  | simpl3 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝑙  ∈  𝑁 ) | 
						
							| 60 | 46 45 59 14 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  𝐹  ∈  𝑊 ) | 
						
							| 61 | 49 58 45 59 60 | ovmpod | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  ( 𝑚 𝑌 𝑙 )  =  𝐹 ) | 
						
							| 62 | 48 61 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  ∧  𝑚  ∈  𝑁 )  →  ( ( 𝑘 𝑋 𝑚 )  ·  ( 𝑚 𝑌 𝑙 ) )  =  ( 𝐷  ·  𝐹 ) ) | 
						
							| 63 | 62 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑘 𝑋 𝑚 )  ·  ( 𝑚 𝑌 𝑙 ) ) )  =  ( 𝑚  ∈  𝑁  ↦  ( 𝐷  ·  𝐹 ) ) ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑁  ∧  𝑙  ∈  𝑁 )  →  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑘 𝑋 𝑚 )  ·  ( 𝑚 𝑌 𝑙 ) ) ) )  =  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( 𝐷  ·  𝐹 ) ) ) ) | 
						
							| 65 | 64 | mpoeq3dva | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( ( 𝑘 𝑋 𝑚 )  ·  ( 𝑚 𝑌 𝑙 ) ) ) ) )  =  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( 𝐷  ·  𝐹 ) ) ) ) ) | 
						
							| 66 | 20 33 65 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑋  ×  𝑌 )  =  ( 𝑘  ∈  𝑁 ,  𝑙  ∈  𝑁  ↦  ( 𝑅  Σg  ( 𝑚  ∈  𝑁  ↦  ( 𝐷  ·  𝐹 ) ) ) ) ) |