Metamath Proof Explorer


Theorem mpompt

Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013) (Revised by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypothesis mpompt.1 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐶 = 𝐷 )
Assertion mpompt ( 𝑧 ∈ ( 𝐴 × 𝐵 ) ↦ 𝐶 ) = ( 𝑥𝐴 , 𝑦𝐵𝐷 )

Proof

Step Hyp Ref Expression
1 mpompt.1 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → 𝐶 = 𝐷 )
2 iunxpconst 𝑥𝐴 ( { 𝑥 } × 𝐵 ) = ( 𝐴 × 𝐵 )
3 2 mpteq1i ( 𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ↦ 𝐶 ) = ( 𝑧 ∈ ( 𝐴 × 𝐵 ) ↦ 𝐶 )
4 1 mpomptx ( 𝑧 𝑥𝐴 ( { 𝑥 } × 𝐵 ) ↦ 𝐶 ) = ( 𝑥𝐴 , 𝑦𝐵𝐷 )
5 3 4 eqtr3i ( 𝑧 ∈ ( 𝐴 × 𝐵 ) ↦ 𝐶 ) = ( 𝑥𝐴 , 𝑦𝐵𝐷 )