Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑢 ∈ V |
2 |
|
vex |
⊢ 𝑣 ∈ V |
3 |
1 2
|
op1std |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 1st ‘ 𝑧 ) = 𝑢 ) |
4 |
3
|
csbeq1d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ) |
5 |
1 2
|
op2ndd |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 2nd ‘ 𝑧 ) = 𝑣 ) |
6 |
5
|
csbeq1d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
7 |
6
|
csbeq2dv |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ 𝑢 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
8 |
4 7
|
eqtrd |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
9 |
8
|
mpomptx |
⊢ ( 𝑧 ∈ ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ) = ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑢 ( { 𝑥 } × 𝐵 ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑥 { 𝑢 } |
12 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ 𝐵 |
13 |
11 12
|
nfxp |
⊢ Ⅎ 𝑥 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
14 |
|
sneq |
⊢ ( 𝑥 = 𝑢 → { 𝑥 } = { 𝑢 } ) |
15 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑢 → 𝐵 = ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
16 |
14 15
|
xpeq12d |
⊢ ( 𝑥 = 𝑢 → ( { 𝑥 } × 𝐵 ) = ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ) |
17 |
10 13 16
|
cbviun |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) = ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
18 |
17
|
mpteq1i |
⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ) = ( 𝑧 ∈ ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ) |
19 |
|
nfcv |
⊢ Ⅎ 𝑢 𝐵 |
20 |
|
nfcv |
⊢ Ⅎ 𝑢 𝐶 |
21 |
|
nfcv |
⊢ Ⅎ 𝑣 𝐶 |
22 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 |
23 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑢 |
24 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ 𝐶 |
25 |
23 24
|
nfcsbw |
⊢ Ⅎ 𝑦 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 |
26 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑣 → 𝐶 = ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
27 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑢 → ⦋ 𝑣 / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
28 |
26 27
|
sylan9eqr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
29 |
19 12 20 21 22 25 15 28
|
cbvmpox |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑢 ∈ 𝐴 , 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ↦ ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
30 |
9 18 29
|
3eqtr4ri |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ) |