Metamath Proof Explorer


Theorem mpondm0

Description: The value of an operation given by a maps-to rule is the empty set if the arguments are not contained in the base sets of the rule. (Contributed by Alexander van der Vekens, 12-Oct-2017)

Ref Expression
Hypothesis mpondm0.f 𝐹 = ( 𝑥𝑋 , 𝑦𝑌𝐶 )
Assertion mpondm0 ( ¬ ( 𝑉𝑋𝑊𝑌 ) → ( 𝑉 𝐹 𝑊 ) = ∅ )

Proof

Step Hyp Ref Expression
1 mpondm0.f 𝐹 = ( 𝑥𝑋 , 𝑦𝑌𝐶 )
2 df-mpo ( 𝑥𝑋 , 𝑦𝑌𝐶 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝑋𝑦𝑌 ) ∧ 𝑧 = 𝐶 ) }
3 1 2 eqtri 𝐹 = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝑋𝑦𝑌 ) ∧ 𝑧 = 𝐶 ) }
4 3 dmeqi dom 𝐹 = dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝑋𝑦𝑌 ) ∧ 𝑧 = 𝐶 ) }
5 dmoprabss dom { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ ( ( 𝑥𝑋𝑦𝑌 ) ∧ 𝑧 = 𝐶 ) } ⊆ ( 𝑋 × 𝑌 )
6 4 5 eqsstri dom 𝐹 ⊆ ( 𝑋 × 𝑌 )
7 nssdmovg ( ( dom 𝐹 ⊆ ( 𝑋 × 𝑌 ) ∧ ¬ ( 𝑉𝑋𝑊𝑌 ) ) → ( 𝑉 𝐹 𝑊 ) = ∅ )
8 6 7 mpan ( ¬ ( 𝑉𝑋𝑊𝑌 ) → ( 𝑉 𝐹 𝑊 ) = ∅ )