Metamath Proof Explorer


Theorem mpoxeldm

Description: If there is an element of the value of an operation given by a maps-to rule, then the first argument is an element of the first component of the domain and the second argument is an element of the second component of the domain depending on the first argument. (Contributed by AV, 25-Oct-2020)

Ref Expression
Hypothesis mpoxeldm.f 𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 )
Assertion mpoxeldm ( 𝑁 ∈ ( 𝑋 𝐹 𝑌 ) → ( 𝑋𝐶𝑌 𝑋 / 𝑥 𝐷 ) )

Proof

Step Hyp Ref Expression
1 mpoxeldm.f 𝐹 = ( 𝑥𝐶 , 𝑦𝐷𝑅 )
2 1 dmmpossx dom 𝐹 𝑥𝐶 ( { 𝑥 } × 𝐷 )
3 elfvdm ( 𝑁 ∈ ( 𝐹 ‘ ⟨ 𝑋 , 𝑌 ⟩ ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom 𝐹 )
4 df-ov ( 𝑋 𝐹 𝑌 ) = ( 𝐹 ‘ ⟨ 𝑋 , 𝑌 ⟩ )
5 3 4 eleq2s ( 𝑁 ∈ ( 𝑋 𝐹 𝑌 ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ dom 𝐹 )
6 2 5 sselid ( 𝑁 ∈ ( 𝑋 𝐹 𝑌 ) → ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝑥𝐶 ( { 𝑥 } × 𝐷 ) )
7 nfcsb1v 𝑥 𝑋 / 𝑥 𝐷
8 csbeq1a ( 𝑥 = 𝑋𝐷 = 𝑋 / 𝑥 𝐷 )
9 7 8 opeliunxp2f ( ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝑥𝐶 ( { 𝑥 } × 𝐷 ) ↔ ( 𝑋𝐶𝑌 𝑋 / 𝑥 𝐷 ) )
10 6 9 sylib ( 𝑁 ∈ ( 𝑋 𝐹 𝑌 ) → ( 𝑋𝐶𝑌 𝑋 / 𝑥 𝐷 ) )