Step |
Hyp |
Ref |
Expression |
1 |
|
mpoxeldm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐷 ↦ 𝑅 ) |
2 |
1
|
dmmpossx |
⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐶 ( { 𝑥 } × 𝐷 ) |
3 |
|
elfvdm |
⊢ ( 𝑁 ∈ ( 𝐹 ‘ 〈 𝑋 , 𝑌 〉 ) → 〈 𝑋 , 𝑌 〉 ∈ dom 𝐹 ) |
4 |
|
df-ov |
⊢ ( 𝑋 𝐹 𝑌 ) = ( 𝐹 ‘ 〈 𝑋 , 𝑌 〉 ) |
5 |
3 4
|
eleq2s |
⊢ ( 𝑁 ∈ ( 𝑋 𝐹 𝑌 ) → 〈 𝑋 , 𝑌 〉 ∈ dom 𝐹 ) |
6 |
2 5
|
sselid |
⊢ ( 𝑁 ∈ ( 𝑋 𝐹 𝑌 ) → 〈 𝑋 , 𝑌 〉 ∈ ∪ 𝑥 ∈ 𝐶 ( { 𝑥 } × 𝐷 ) ) |
7 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑥 ⦌ 𝐷 |
8 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑋 → 𝐷 = ⦋ 𝑋 / 𝑥 ⦌ 𝐷 ) |
9 |
7 8
|
opeliunxp2f |
⊢ ( 〈 𝑋 , 𝑌 〉 ∈ ∪ 𝑥 ∈ 𝐶 ( { 𝑥 } × 𝐷 ) ↔ ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐷 ) ) |
10 |
6 9
|
sylib |
⊢ ( 𝑁 ∈ ( 𝑋 𝐹 𝑌 ) → ( 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ ⦋ 𝑋 / 𝑥 ⦌ 𝐷 ) ) |