Metamath Proof Explorer


Theorem mpoxopoveqd

Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017)

Ref Expression
Hypotheses mpoxopoveq.f 𝐹 = ( 𝑥 ∈ V , 𝑦 ∈ ( 1st𝑥 ) ↦ { 𝑛 ∈ ( 1st𝑥 ) ∣ 𝜑 } )
mpoxopoveqd.1 ( 𝜓 → ( 𝑉𝑋𝑊𝑌 ) )
mpoxopoveqd.2 ( ( 𝜓 ∧ ¬ 𝐾𝑉 ) → { 𝑛𝑉[𝑉 , 𝑊 ⟩ / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } = ∅ )
Assertion mpoxopoveqd ( 𝜓 → ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = { 𝑛𝑉[𝑉 , 𝑊 ⟩ / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } )

Proof

Step Hyp Ref Expression
1 mpoxopoveq.f 𝐹 = ( 𝑥 ∈ V , 𝑦 ∈ ( 1st𝑥 ) ↦ { 𝑛 ∈ ( 1st𝑥 ) ∣ 𝜑 } )
2 mpoxopoveqd.1 ( 𝜓 → ( 𝑉𝑋𝑊𝑌 ) )
3 mpoxopoveqd.2 ( ( 𝜓 ∧ ¬ 𝐾𝑉 ) → { 𝑛𝑉[𝑉 , 𝑊 ⟩ / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } = ∅ )
4 1 mpoxopoveq ( ( ( 𝑉𝑋𝑊𝑌 ) ∧ 𝐾𝑉 ) → ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = { 𝑛𝑉[𝑉 , 𝑊 ⟩ / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } )
5 4 ex ( ( 𝑉𝑋𝑊𝑌 ) → ( 𝐾𝑉 → ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = { 𝑛𝑉[𝑉 , 𝑊 ⟩ / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) )
6 5 2 syl11 ( 𝐾𝑉 → ( 𝜓 → ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = { 𝑛𝑉[𝑉 , 𝑊 ⟩ / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) )
7 df-nel ( 𝐾𝑉 ↔ ¬ 𝐾𝑉 )
8 1 mpoxopynvov0 ( 𝐾𝑉 → ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = ∅ )
9 7 8 sylbir ( ¬ 𝐾𝑉 → ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = ∅ )
10 9 adantr ( ( ¬ 𝐾𝑉𝜓 ) → ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = ∅ )
11 3 eqcomd ( ( 𝜓 ∧ ¬ 𝐾𝑉 ) → ∅ = { 𝑛𝑉[𝑉 , 𝑊 ⟩ / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } )
12 11 ancoms ( ( ¬ 𝐾𝑉𝜓 ) → ∅ = { 𝑛𝑉[𝑉 , 𝑊 ⟩ / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } )
13 10 12 eqtrd ( ( ¬ 𝐾𝑉𝜓 ) → ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = { 𝑛𝑉[𝑉 , 𝑊 ⟩ / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } )
14 13 ex ( ¬ 𝐾𝑉 → ( 𝜓 → ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = { 𝑛𝑉[𝑉 , 𝑊 ⟩ / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } ) )
15 6 14 pm2.61i ( 𝜓 → ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = { 𝑛𝑉[𝑉 , 𝑊 ⟩ / 𝑥 ] [ 𝐾 / 𝑦 ] 𝜑 } )