Step |
Hyp |
Ref |
Expression |
1 |
|
mpoxopn0yelv.f |
⊢ 𝐹 = ( 𝑥 ∈ V , 𝑦 ∈ ( 1st ‘ 𝑥 ) ↦ 𝐶 ) |
2 |
|
neq0 |
⊢ ( ¬ ( 𝑉 𝐹 𝐾 ) = ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑉 𝐹 𝐾 ) ) |
3 |
1
|
dmmpossx |
⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ V ( { 𝑥 } × ( 1st ‘ 𝑥 ) ) |
4 |
|
elfvdm |
⊢ ( 𝑥 ∈ ( 𝐹 ‘ 〈 𝑉 , 𝐾 〉 ) → 〈 𝑉 , 𝐾 〉 ∈ dom 𝐹 ) |
5 |
|
df-ov |
⊢ ( 𝑉 𝐹 𝐾 ) = ( 𝐹 ‘ 〈 𝑉 , 𝐾 〉 ) |
6 |
4 5
|
eleq2s |
⊢ ( 𝑥 ∈ ( 𝑉 𝐹 𝐾 ) → 〈 𝑉 , 𝐾 〉 ∈ dom 𝐹 ) |
7 |
3 6
|
sselid |
⊢ ( 𝑥 ∈ ( 𝑉 𝐹 𝐾 ) → 〈 𝑉 , 𝐾 〉 ∈ ∪ 𝑥 ∈ V ( { 𝑥 } × ( 1st ‘ 𝑥 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑥 = 𝑉 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑉 ) ) |
9 |
8
|
opeliunxp2 |
⊢ ( 〈 𝑉 , 𝐾 〉 ∈ ∪ 𝑥 ∈ V ( { 𝑥 } × ( 1st ‘ 𝑥 ) ) ↔ ( 𝑉 ∈ V ∧ 𝐾 ∈ ( 1st ‘ 𝑉 ) ) ) |
10 |
|
eluni |
⊢ ( 𝐾 ∈ ∪ dom { 𝑉 } ↔ ∃ 𝑛 ( 𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom { 𝑉 } ) ) |
11 |
|
ne0i |
⊢ ( 𝑛 ∈ dom { 𝑉 } → dom { 𝑉 } ≠ ∅ ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom { 𝑉 } ) ∧ 𝑉 ∈ V ) → dom { 𝑉 } ≠ ∅ ) |
13 |
|
dmsnn0 |
⊢ ( 𝑉 ∈ ( V × V ) ↔ dom { 𝑉 } ≠ ∅ ) |
14 |
12 13
|
sylibr |
⊢ ( ( ( 𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom { 𝑉 } ) ∧ 𝑉 ∈ V ) → 𝑉 ∈ ( V × V ) ) |
15 |
14
|
ex |
⊢ ( ( 𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom { 𝑉 } ) → ( 𝑉 ∈ V → 𝑉 ∈ ( V × V ) ) ) |
16 |
15
|
exlimiv |
⊢ ( ∃ 𝑛 ( 𝐾 ∈ 𝑛 ∧ 𝑛 ∈ dom { 𝑉 } ) → ( 𝑉 ∈ V → 𝑉 ∈ ( V × V ) ) ) |
17 |
10 16
|
sylbi |
⊢ ( 𝐾 ∈ ∪ dom { 𝑉 } → ( 𝑉 ∈ V → 𝑉 ∈ ( V × V ) ) ) |
18 |
|
1stval |
⊢ ( 1st ‘ 𝑉 ) = ∪ dom { 𝑉 } |
19 |
17 18
|
eleq2s |
⊢ ( 𝐾 ∈ ( 1st ‘ 𝑉 ) → ( 𝑉 ∈ V → 𝑉 ∈ ( V × V ) ) ) |
20 |
19
|
impcom |
⊢ ( ( 𝑉 ∈ V ∧ 𝐾 ∈ ( 1st ‘ 𝑉 ) ) → 𝑉 ∈ ( V × V ) ) |
21 |
9 20
|
sylbi |
⊢ ( 〈 𝑉 , 𝐾 〉 ∈ ∪ 𝑥 ∈ V ( { 𝑥 } × ( 1st ‘ 𝑥 ) ) → 𝑉 ∈ ( V × V ) ) |
22 |
7 21
|
syl |
⊢ ( 𝑥 ∈ ( 𝑉 𝐹 𝐾 ) → 𝑉 ∈ ( V × V ) ) |
23 |
22
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝑉 𝐹 𝐾 ) → 𝑉 ∈ ( V × V ) ) |
24 |
2 23
|
sylbi |
⊢ ( ¬ ( 𝑉 𝐹 𝐾 ) = ∅ → 𝑉 ∈ ( V × V ) ) |
25 |
24
|
con1i |
⊢ ( ¬ 𝑉 ∈ ( V × V ) → ( 𝑉 𝐹 𝐾 ) = ∅ ) |