Metamath Proof Explorer


Theorem mpoxopynvov0g

Description: If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017)

Ref Expression
Hypothesis mpoxopn0yelv.f 𝐹 = ( 𝑥 ∈ V , 𝑦 ∈ ( 1st𝑥 ) ↦ 𝐶 )
Assertion mpoxopynvov0g ( ( ( 𝑉𝑋𝑊𝑌 ) ∧ 𝐾𝑉 ) → ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = ∅ )

Proof

Step Hyp Ref Expression
1 mpoxopn0yelv.f 𝐹 = ( 𝑥 ∈ V , 𝑦 ∈ ( 1st𝑥 ) ↦ 𝐶 )
2 neq0 ( ¬ ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = ∅ ↔ ∃ 𝑛 𝑛 ∈ ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) )
3 1 mpoxopn0yelv ( ( 𝑉𝑋𝑊𝑌 ) → ( 𝑛 ∈ ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) → 𝐾𝑉 ) )
4 nnel ( ¬ 𝐾𝑉𝐾𝑉 )
5 3 4 syl6ibr ( ( 𝑉𝑋𝑊𝑌 ) → ( 𝑛 ∈ ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) → ¬ 𝐾𝑉 ) )
6 5 exlimdv ( ( 𝑉𝑋𝑊𝑌 ) → ( ∃ 𝑛 𝑛 ∈ ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) → ¬ 𝐾𝑉 ) )
7 2 6 syl5bi ( ( 𝑉𝑋𝑊𝑌 ) → ( ¬ ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = ∅ → ¬ 𝐾𝑉 ) )
8 7 con4d ( ( 𝑉𝑋𝑊𝑌 ) → ( 𝐾𝑉 → ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = ∅ ) )
9 8 imp ( ( ( 𝑉𝑋𝑊𝑌 ) ∧ 𝐾𝑉 ) → ( ⟨ 𝑉 , 𝑊𝐹 𝐾 ) = ∅ )