Step |
Hyp |
Ref |
Expression |
1 |
|
mpoxopn0yelv.f |
⊢ 𝐹 = ( 𝑥 ∈ V , 𝑦 ∈ ( 1st ‘ 𝑥 ) ↦ 𝐶 ) |
2 |
|
neq0 |
⊢ ( ¬ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = ∅ ↔ ∃ 𝑛 𝑛 ∈ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) ) |
3 |
1
|
mpoxopn0yelv |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝑛 ∈ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) → 𝐾 ∈ 𝑉 ) ) |
4 |
|
nnel |
⊢ ( ¬ 𝐾 ∉ 𝑉 ↔ 𝐾 ∈ 𝑉 ) |
5 |
3 4
|
syl6ibr |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝑛 ∈ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) → ¬ 𝐾 ∉ 𝑉 ) ) |
6 |
5
|
exlimdv |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( ∃ 𝑛 𝑛 ∈ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) → ¬ 𝐾 ∉ 𝑉 ) ) |
7 |
2 6
|
syl5bi |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( ¬ ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = ∅ → ¬ 𝐾 ∉ 𝑉 ) ) |
8 |
7
|
con4d |
⊢ ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) → ( 𝐾 ∉ 𝑉 → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = ∅ ) ) |
9 |
8
|
imp |
⊢ ( ( ( 𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ) ∧ 𝐾 ∉ 𝑉 ) → ( 〈 𝑉 , 𝑊 〉 𝐹 𝐾 ) = ∅ ) |