Metamath Proof Explorer


Theorem mpsyl

Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011)

Ref Expression
Hypotheses mpsyl.1 𝜑
mpsyl.2 ( 𝜓𝜒 )
mpsyl.3 ( 𝜑 → ( 𝜒𝜃 ) )
Assertion mpsyl ( 𝜓𝜃 )

Proof

Step Hyp Ref Expression
1 mpsyl.1 𝜑
2 mpsyl.2 ( 𝜓𝜒 )
3 mpsyl.3 ( 𝜑 → ( 𝜒𝜃 ) )
4 1 a1i ( 𝜓𝜑 )
5 4 2 3 sylc ( 𝜓𝜃 )