Metamath Proof Explorer
Description: Modus ponens combined with a double syllogism inference. (Contributed by Alan Sare, 22-Jul-2012)
|
|
Ref |
Expression |
|
Hypotheses |
mpsylsyld.1 |
⊢ 𝜑 |
|
|
mpsylsyld.2 |
⊢ ( 𝜓 → ( 𝜒 → 𝜃 ) ) |
|
|
mpsylsyld.3 |
⊢ ( 𝜑 → ( 𝜃 → 𝜏 ) ) |
|
Assertion |
mpsylsyld |
⊢ ( 𝜓 → ( 𝜒 → 𝜏 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpsylsyld.1 |
⊢ 𝜑 |
2 |
|
mpsylsyld.2 |
⊢ ( 𝜓 → ( 𝜒 → 𝜃 ) ) |
3 |
|
mpsylsyld.3 |
⊢ ( 𝜑 → ( 𝜃 → 𝜏 ) ) |
4 |
1
|
a1i |
⊢ ( 𝜓 → 𝜑 ) |
5 |
4 2 3
|
sylsyld |
⊢ ( 𝜓 → ( 𝜒 → 𝜏 ) ) |