Metamath Proof Explorer


Theorem mpsylsyld

Description: Modus ponens combined with a double syllogism inference. (Contributed by Alan Sare, 22-Jul-2012)

Ref Expression
Hypotheses mpsylsyld.1 𝜑
mpsylsyld.2 ( 𝜓 → ( 𝜒𝜃 ) )
mpsylsyld.3 ( 𝜑 → ( 𝜃𝜏 ) )
Assertion mpsylsyld ( 𝜓 → ( 𝜒𝜏 ) )

Proof

Step Hyp Ref Expression
1 mpsylsyld.1 𝜑
2 mpsylsyld.2 ( 𝜓 → ( 𝜒𝜃 ) )
3 mpsylsyld.3 ( 𝜑 → ( 𝜃𝜏 ) )
4 1 a1i ( 𝜓𝜑 )
5 4 2 3 sylsyld ( 𝜓 → ( 𝜒𝜏 ) )