Metamath Proof Explorer


Theorem mpt0

Description: A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Assertion mpt0 ( 𝑥 ∈ ∅ ↦ 𝐴 ) = ∅

Proof

Step Hyp Ref Expression
1 ral0 𝑥 ∈ ∅ 𝐴 ∈ V
2 eqid ( 𝑥 ∈ ∅ ↦ 𝐴 ) = ( 𝑥 ∈ ∅ ↦ 𝐴 )
3 2 fnmpt ( ∀ 𝑥 ∈ ∅ 𝐴 ∈ V → ( 𝑥 ∈ ∅ ↦ 𝐴 ) Fn ∅ )
4 1 3 ax-mp ( 𝑥 ∈ ∅ ↦ 𝐴 ) Fn ∅
5 fn0 ( ( 𝑥 ∈ ∅ ↦ 𝐴 ) Fn ∅ ↔ ( 𝑥 ∈ ∅ ↦ 𝐴 ) = ∅ )
6 4 5 mpbi ( 𝑥 ∈ ∅ ↦ 𝐴 ) = ∅