Metamath Proof Explorer


Theorem mptcnfimad

Description: The converse of a mapping of subsets to their image of a bijection. (Contributed by AV, 23-Apr-2025)

Ref Expression
Hypotheses mptcnfimad.m 𝑀 = ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) )
mptcnfimad.f ( 𝜑𝐹 : 𝑉1-1-onto𝑊 )
mptcnfimad.a ( 𝜑𝐴 ⊆ 𝒫 𝑉 )
mptcnfimad.r ( 𝜑 → ran 𝑀 ⊆ 𝒫 𝑊 )
mptcnfimad.v ( 𝜑𝑉𝑈 )
Assertion mptcnfimad ( 𝜑 𝑀 = ( 𝑦 ∈ ran 𝑀 ↦ ( 𝐹𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 mptcnfimad.m 𝑀 = ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) )
2 mptcnfimad.f ( 𝜑𝐹 : 𝑉1-1-onto𝑊 )
3 mptcnfimad.a ( 𝜑𝐴 ⊆ 𝒫 𝑉 )
4 mptcnfimad.r ( 𝜑 → ran 𝑀 ⊆ 𝒫 𝑊 )
5 mptcnfimad.v ( 𝜑𝑉𝑈 )
6 1 cnveqi 𝑀 = ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) )
7 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
8 f1of ( 𝐹 : 𝑉1-1-onto𝑊𝐹 : 𝑉𝑊 )
9 2 8 syl ( 𝜑𝐹 : 𝑉𝑊 )
10 9 5 fexd ( 𝜑𝐹 ∈ V )
11 10 imaexd ( 𝜑 → ( 𝐹𝑥 ) ∈ V )
12 11 adantr ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ V )
13 1 7 12 elrnmpt1d ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ ran 𝑀 )
14 f1of1 ( 𝐹 : 𝑉1-1-onto𝑊𝐹 : 𝑉1-1𝑊 )
15 2 14 syl ( 𝜑𝐹 : 𝑉1-1𝑊 )
16 ssel ( 𝐴 ⊆ 𝒫 𝑉 → ( 𝑥𝐴𝑥 ∈ 𝒫 𝑉 ) )
17 elpwi ( 𝑥 ∈ 𝒫 𝑉𝑥𝑉 )
18 16 17 syl6 ( 𝐴 ⊆ 𝒫 𝑉 → ( 𝑥𝐴𝑥𝑉 ) )
19 3 18 syl ( 𝜑 → ( 𝑥𝐴𝑥𝑉 ) )
20 19 imp ( ( 𝜑𝑥𝐴 ) → 𝑥𝑉 )
21 f1imacnv ( ( 𝐹 : 𝑉1-1𝑊𝑥𝑉 ) → ( 𝐹 “ ( 𝐹𝑥 ) ) = 𝑥 )
22 21 eqcomd ( ( 𝐹 : 𝑉1-1𝑊𝑥𝑉 ) → 𝑥 = ( 𝐹 “ ( 𝐹𝑥 ) ) )
23 15 20 22 syl2an2r ( ( 𝜑𝑥𝐴 ) → 𝑥 = ( 𝐹 “ ( 𝐹𝑥 ) ) )
24 13 23 jca ( ( 𝜑𝑥𝐴 ) → ( ( 𝐹𝑥 ) ∈ ran 𝑀𝑥 = ( 𝐹 “ ( 𝐹𝑥 ) ) ) )
25 eleq1 ( 𝑦 = ( 𝐹𝑥 ) → ( 𝑦 ∈ ran 𝑀 ↔ ( 𝐹𝑥 ) ∈ ran 𝑀 ) )
26 imaeq2 ( 𝑦 = ( 𝐹𝑥 ) → ( 𝐹𝑦 ) = ( 𝐹 “ ( 𝐹𝑥 ) ) )
27 26 eqeq2d ( 𝑦 = ( 𝐹𝑥 ) → ( 𝑥 = ( 𝐹𝑦 ) ↔ 𝑥 = ( 𝐹 “ ( 𝐹𝑥 ) ) ) )
28 25 27 anbi12d ( 𝑦 = ( 𝐹𝑥 ) → ( ( 𝑦 ∈ ran 𝑀𝑥 = ( 𝐹𝑦 ) ) ↔ ( ( 𝐹𝑥 ) ∈ ran 𝑀𝑥 = ( 𝐹 “ ( 𝐹𝑥 ) ) ) ) )
29 24 28 syl5ibrcom ( ( 𝜑𝑥𝐴 ) → ( 𝑦 = ( 𝐹𝑥 ) → ( 𝑦 ∈ ran 𝑀𝑥 = ( 𝐹𝑦 ) ) ) )
30 29 expimpd ( 𝜑 → ( ( 𝑥𝐴𝑦 = ( 𝐹𝑥 ) ) → ( 𝑦 ∈ ran 𝑀𝑥 = ( 𝐹𝑦 ) ) ) )
31 12 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ V )
32 1 fnmpt ( ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ V → 𝑀 Fn 𝐴 )
33 31 32 syl ( 𝜑𝑀 Fn 𝐴 )
34 fvelrnb ( 𝑀 Fn 𝐴 → ( 𝑦 ∈ ran 𝑀 ↔ ∃ 𝑥𝐴 ( 𝑀𝑥 ) = 𝑦 ) )
35 33 34 syl ( 𝜑 → ( 𝑦 ∈ ran 𝑀 ↔ ∃ 𝑥𝐴 ( 𝑀𝑥 ) = 𝑦 ) )
36 imaeq2 ( 𝑥 = 𝑧 → ( 𝐹𝑥 ) = ( 𝐹𝑧 ) )
37 36 cbvmptv ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) = ( 𝑧𝐴 ↦ ( 𝐹𝑧 ) )
38 1 37 eqtri 𝑀 = ( 𝑧𝐴 ↦ ( 𝐹𝑧 ) )
39 38 a1i ( ( 𝜑𝑥𝐴 ) → 𝑀 = ( 𝑧𝐴 ↦ ( 𝐹𝑧 ) ) )
40 simpr ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑧 = 𝑥 ) → 𝑧 = 𝑥 )
41 40 imaeq2d ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑧 = 𝑥 ) → ( 𝐹𝑧 ) = ( 𝐹𝑥 ) )
42 39 41 7 12 fvmptd ( ( 𝜑𝑥𝐴 ) → ( 𝑀𝑥 ) = ( 𝐹𝑥 ) )
43 42 eqeq1d ( ( 𝜑𝑥𝐴 ) → ( ( 𝑀𝑥 ) = 𝑦 ↔ ( 𝐹𝑥 ) = 𝑦 ) )
44 26 eqcoms ( ( 𝐹𝑥 ) = 𝑦 → ( 𝐹𝑦 ) = ( 𝐹 “ ( 𝐹𝑥 ) ) )
45 44 adantl ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝐹𝑥 ) = 𝑦 ) → ( 𝐹𝑦 ) = ( 𝐹 “ ( 𝐹𝑥 ) ) )
46 15 20 21 syl2an2r ( ( 𝜑𝑥𝐴 ) → ( 𝐹 “ ( 𝐹𝑥 ) ) = 𝑥 )
47 46 7 eqeltrd ( ( 𝜑𝑥𝐴 ) → ( 𝐹 “ ( 𝐹𝑥 ) ) ∈ 𝐴 )
48 47 adantr ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝐹𝑥 ) = 𝑦 ) → ( 𝐹 “ ( 𝐹𝑥 ) ) ∈ 𝐴 )
49 45 48 eqeltrd ( ( ( 𝜑𝑥𝐴 ) ∧ ( 𝐹𝑥 ) = 𝑦 ) → ( 𝐹𝑦 ) ∈ 𝐴 )
50 49 ex ( ( 𝜑𝑥𝐴 ) → ( ( 𝐹𝑥 ) = 𝑦 → ( 𝐹𝑦 ) ∈ 𝐴 ) )
51 43 50 sylbid ( ( 𝜑𝑥𝐴 ) → ( ( 𝑀𝑥 ) = 𝑦 → ( 𝐹𝑦 ) ∈ 𝐴 ) )
52 51 rexlimdva ( 𝜑 → ( ∃ 𝑥𝐴 ( 𝑀𝑥 ) = 𝑦 → ( 𝐹𝑦 ) ∈ 𝐴 ) )
53 35 52 sylbid ( 𝜑 → ( 𝑦 ∈ ran 𝑀 → ( 𝐹𝑦 ) ∈ 𝐴 ) )
54 53 imp ( ( 𝜑𝑦 ∈ ran 𝑀 ) → ( 𝐹𝑦 ) ∈ 𝐴 )
55 f1ofo ( 𝐹 : 𝑉1-1-onto𝑊𝐹 : 𝑉onto𝑊 )
56 2 55 syl ( 𝜑𝐹 : 𝑉onto𝑊 )
57 ssel ( ran 𝑀 ⊆ 𝒫 𝑊 → ( 𝑦 ∈ ran 𝑀𝑦 ∈ 𝒫 𝑊 ) )
58 elpwi ( 𝑦 ∈ 𝒫 𝑊𝑦𝑊 )
59 57 58 syl6 ( ran 𝑀 ⊆ 𝒫 𝑊 → ( 𝑦 ∈ ran 𝑀𝑦𝑊 ) )
60 4 59 syl ( 𝜑 → ( 𝑦 ∈ ran 𝑀𝑦𝑊 ) )
61 60 imp ( ( 𝜑𝑦 ∈ ran 𝑀 ) → 𝑦𝑊 )
62 foimacnv ( ( 𝐹 : 𝑉onto𝑊𝑦𝑊 ) → ( 𝐹 “ ( 𝐹𝑦 ) ) = 𝑦 )
63 56 61 62 syl2an2r ( ( 𝜑𝑦 ∈ ran 𝑀 ) → ( 𝐹 “ ( 𝐹𝑦 ) ) = 𝑦 )
64 63 eqcomd ( ( 𝜑𝑦 ∈ ran 𝑀 ) → 𝑦 = ( 𝐹 “ ( 𝐹𝑦 ) ) )
65 54 64 jca ( ( 𝜑𝑦 ∈ ran 𝑀 ) → ( ( 𝐹𝑦 ) ∈ 𝐴𝑦 = ( 𝐹 “ ( 𝐹𝑦 ) ) ) )
66 eleq1 ( 𝑥 = ( 𝐹𝑦 ) → ( 𝑥𝐴 ↔ ( 𝐹𝑦 ) ∈ 𝐴 ) )
67 imaeq2 ( 𝑥 = ( 𝐹𝑦 ) → ( 𝐹𝑥 ) = ( 𝐹 “ ( 𝐹𝑦 ) ) )
68 67 eqeq2d ( 𝑥 = ( 𝐹𝑦 ) → ( 𝑦 = ( 𝐹𝑥 ) ↔ 𝑦 = ( 𝐹 “ ( 𝐹𝑦 ) ) ) )
69 66 68 anbi12d ( 𝑥 = ( 𝐹𝑦 ) → ( ( 𝑥𝐴𝑦 = ( 𝐹𝑥 ) ) ↔ ( ( 𝐹𝑦 ) ∈ 𝐴𝑦 = ( 𝐹 “ ( 𝐹𝑦 ) ) ) ) )
70 65 69 syl5ibrcom ( ( 𝜑𝑦 ∈ ran 𝑀 ) → ( 𝑥 = ( 𝐹𝑦 ) → ( 𝑥𝐴𝑦 = ( 𝐹𝑥 ) ) ) )
71 70 expimpd ( 𝜑 → ( ( 𝑦 ∈ ran 𝑀𝑥 = ( 𝐹𝑦 ) ) → ( 𝑥𝐴𝑦 = ( 𝐹𝑥 ) ) ) )
72 30 71 impbid ( 𝜑 → ( ( 𝑥𝐴𝑦 = ( 𝐹𝑥 ) ) ↔ ( 𝑦 ∈ ran 𝑀𝑥 = ( 𝐹𝑦 ) ) ) )
73 72 mptcnv ( 𝜑 ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) = ( 𝑦 ∈ ran 𝑀 ↦ ( 𝐹𝑦 ) ) )
74 6 73 eqtrid ( 𝜑 𝑀 = ( 𝑦 ∈ ran 𝑀 ↦ ( 𝐹𝑦 ) ) )