Step |
Hyp |
Ref |
Expression |
1 |
|
mptcnfimad.m |
⊢ 𝑀 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 “ 𝑥 ) ) |
2 |
|
mptcnfimad.f |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1-onto→ 𝑊 ) |
3 |
|
mptcnfimad.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝒫 𝑉 ) |
4 |
|
mptcnfimad.r |
⊢ ( 𝜑 → ran 𝑀 ⊆ 𝒫 𝑊 ) |
5 |
|
mptcnfimad.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) |
6 |
1
|
cnveqi |
⊢ ◡ 𝑀 = ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 “ 𝑥 ) ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
8 |
|
f1of |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 ⟶ 𝑊 ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ 𝑊 ) |
10 |
9 5
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
11 |
10
|
imaexd |
⊢ ( 𝜑 → ( 𝐹 “ 𝑥 ) ∈ V ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 “ 𝑥 ) ∈ V ) |
13 |
1 7 12
|
elrnmpt1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 “ 𝑥 ) ∈ ran 𝑀 ) |
14 |
|
f1of1 |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
15 |
2 14
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 –1-1→ 𝑊 ) |
16 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝒫 𝑉 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 𝑉 ) ) |
17 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑉 → 𝑥 ⊆ 𝑉 ) |
18 |
16 17
|
syl6 |
⊢ ( 𝐴 ⊆ 𝒫 𝑉 → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝑉 ) ) |
19 |
3 18
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝑉 ) ) |
20 |
19
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ⊆ 𝑉 ) |
21 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑥 ⊆ 𝑉 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) = 𝑥 ) |
22 |
21
|
eqcomd |
⊢ ( ( 𝐹 : 𝑉 –1-1→ 𝑊 ∧ 𝑥 ⊆ 𝑉 ) → 𝑥 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) |
23 |
15 20 22
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) |
24 |
13 23
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 “ 𝑥 ) ∈ ran 𝑀 ∧ 𝑥 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) ) |
25 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝐹 “ 𝑥 ) → ( 𝑦 ∈ ran 𝑀 ↔ ( 𝐹 “ 𝑥 ) ∈ ran 𝑀 ) ) |
26 |
|
imaeq2 |
⊢ ( 𝑦 = ( 𝐹 “ 𝑥 ) → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) |
27 |
26
|
eqeq2d |
⊢ ( 𝑦 = ( 𝐹 “ 𝑥 ) → ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ↔ 𝑥 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) ) |
28 |
25 27
|
anbi12d |
⊢ ( 𝑦 = ( 𝐹 “ 𝑥 ) → ( ( 𝑦 ∈ ran 𝑀 ∧ 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ) ↔ ( ( 𝐹 “ 𝑥 ) ∈ ran 𝑀 ∧ 𝑥 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) ) ) |
29 |
24 28
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = ( 𝐹 “ 𝑥 ) → ( 𝑦 ∈ ran 𝑀 ∧ 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
30 |
29
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 “ 𝑥 ) ) → ( 𝑦 ∈ ran 𝑀 ∧ 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
31 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 “ 𝑥 ) ∈ V ) |
32 |
1
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 “ 𝑥 ) ∈ V → 𝑀 Fn 𝐴 ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝑀 Fn 𝐴 ) |
34 |
|
fvelrnb |
⊢ ( 𝑀 Fn 𝐴 → ( 𝑦 ∈ ran 𝑀 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑀 ‘ 𝑥 ) = 𝑦 ) ) |
35 |
33 34
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝑀 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑀 ‘ 𝑥 ) = 𝑦 ) ) |
36 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑧 ) ) |
37 |
36
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 “ 𝑧 ) ) |
38 |
1 37
|
eqtri |
⊢ 𝑀 = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 “ 𝑧 ) ) |
39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 = ( 𝑧 ∈ 𝐴 ↦ ( 𝐹 “ 𝑧 ) ) ) |
40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 = 𝑥 ) → 𝑧 = 𝑥 ) |
41 |
40
|
imaeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 = 𝑥 ) → ( 𝐹 “ 𝑧 ) = ( 𝐹 “ 𝑥 ) ) |
42 |
39 41 7 12
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑥 ) = ( 𝐹 “ 𝑥 ) ) |
43 |
42
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑥 ) = 𝑦 ↔ ( 𝐹 “ 𝑥 ) = 𝑦 ) ) |
44 |
26
|
eqcoms |
⊢ ( ( 𝐹 “ 𝑥 ) = 𝑦 → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) |
45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 “ 𝑥 ) = 𝑦 ) → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ) |
46 |
15 20 21
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) = 𝑥 ) |
47 |
46 7
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ∈ 𝐴 ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 “ 𝑥 ) = 𝑦 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑥 ) ) ∈ 𝐴 ) |
49 |
45 48
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐹 “ 𝑥 ) = 𝑦 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ) |
50 |
49
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 “ 𝑥 ) = 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ) ) |
51 |
43 50
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑀 ‘ 𝑥 ) = 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ) ) |
52 |
51
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ( 𝑀 ‘ 𝑥 ) = 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ) ) |
53 |
35 52
|
sylbid |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝑀 → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ) ) |
54 |
53
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑀 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ) |
55 |
|
f1ofo |
⊢ ( 𝐹 : 𝑉 –1-1-onto→ 𝑊 → 𝐹 : 𝑉 –onto→ 𝑊 ) |
56 |
2 55
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ 𝑊 ) |
57 |
|
ssel |
⊢ ( ran 𝑀 ⊆ 𝒫 𝑊 → ( 𝑦 ∈ ran 𝑀 → 𝑦 ∈ 𝒫 𝑊 ) ) |
58 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑊 → 𝑦 ⊆ 𝑊 ) |
59 |
57 58
|
syl6 |
⊢ ( ran 𝑀 ⊆ 𝒫 𝑊 → ( 𝑦 ∈ ran 𝑀 → 𝑦 ⊆ 𝑊 ) ) |
60 |
4 59
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝑀 → 𝑦 ⊆ 𝑊 ) ) |
61 |
60
|
imp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑀 ) → 𝑦 ⊆ 𝑊 ) |
62 |
|
foimacnv |
⊢ ( ( 𝐹 : 𝑉 –onto→ 𝑊 ∧ 𝑦 ⊆ 𝑊 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) |
63 |
56 61 62
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑀 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) = 𝑦 ) |
64 |
63
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑀 ) → 𝑦 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) |
65 |
54 64
|
jca |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑀 ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ∧ 𝑦 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
66 |
|
eleq1 |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝑥 ∈ 𝐴 ↔ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ) ) |
67 |
|
imaeq2 |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) |
68 |
67
|
eqeq2d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝑦 = ( 𝐹 “ 𝑥 ) ↔ 𝑦 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
69 |
66 68
|
anbi12d |
⊢ ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 “ 𝑥 ) ) ↔ ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐴 ∧ 𝑦 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
70 |
65 69
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran 𝑀 ) → ( 𝑥 = ( ◡ 𝐹 “ 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 “ 𝑥 ) ) ) ) |
71 |
70
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ran 𝑀 ∧ 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 “ 𝑥 ) ) ) ) |
72 |
30 71
|
impbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = ( 𝐹 “ 𝑥 ) ) ↔ ( 𝑦 ∈ ran 𝑀 ∧ 𝑥 = ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
73 |
72
|
mptcnv |
⊢ ( 𝜑 → ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑦 ∈ ran 𝑀 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) |
74 |
6 73
|
eqtrid |
⊢ ( 𝜑 → ◡ 𝑀 = ( 𝑦 ∈ ran 𝑀 ↦ ( ◡ 𝐹 “ 𝑦 ) ) ) |