Metamath Proof Explorer


Theorem mptcnv

Description: The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017)

Ref Expression
Hypothesis mptcnv.1 ( 𝜑 → ( ( 𝑥𝐴𝑦 = 𝐵 ) ↔ ( 𝑦𝐶𝑥 = 𝐷 ) ) )
Assertion mptcnv ( 𝜑 ( 𝑥𝐴𝐵 ) = ( 𝑦𝐶𝐷 ) )

Proof

Step Hyp Ref Expression
1 mptcnv.1 ( 𝜑 → ( ( 𝑥𝐴𝑦 = 𝐵 ) ↔ ( 𝑦𝐶𝑥 = 𝐷 ) ) )
2 1 opabbidv ( 𝜑 → { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) } = { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑦𝐶𝑥 = 𝐷 ) } )
3 df-mpt ( 𝑥𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
4 3 cnveqi ( 𝑥𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
5 cnvopab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) } = { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
6 4 5 eqtri ( 𝑥𝐴𝐵 ) = { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
7 df-mpt ( 𝑦𝐶𝐷 ) = { ⟨ 𝑦 , 𝑥 ⟩ ∣ ( 𝑦𝐶𝑥 = 𝐷 ) }
8 2 6 7 3eqtr4g ( 𝜑 ( 𝑥𝐴𝐵 ) = ( 𝑦𝐶𝐷 ) )