| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funmpt |
⊢ Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 2 |
|
ctex |
⊢ ( 𝐴 ≼ ω → 𝐴 ∈ V ) |
| 3 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 4 |
3
|
dmmptss |
⊢ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐴 |
| 5 |
|
ssdomg |
⊢ ( 𝐴 ∈ V → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ 𝐴 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ 𝐴 ) ) |
| 6 |
2 4 5
|
mpisyl |
⊢ ( 𝐴 ≼ ω → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ 𝐴 ) |
| 7 |
|
domtr |
⊢ ( ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ ω ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
| 8 |
6 7
|
mpancom |
⊢ ( 𝐴 ≼ ω → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
| 9 |
|
funfn |
⊢ ( Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 10 |
|
fnct |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
| 11 |
9 10
|
sylanb |
⊢ ( ( Fun ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |
| 12 |
1 8 11
|
sylancr |
⊢ ( 𝐴 ≼ ω → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ≼ ω ) |