Metamath Proof Explorer


Theorem mptelee

Description: A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013) (Proof shortened by SN, 2-Feb-2026)

Ref Expression
Assertion mptelee ( 𝑁 ∈ ℕ → ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ ) )

Proof

Step Hyp Ref Expression
1 elee ( 𝑁 ∈ ℕ → ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ) )
2 eqid ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) = ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) )
3 2 fmpt ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ ↔ ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) : ( 1 ... 𝑁 ) ⟶ ℝ )
4 1 3 bitr4di ( 𝑁 ∈ ℕ → ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ ) )