Description: A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013) (Proof shortened by SN, 2-Feb-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mptelee | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elee | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ) ) | |
| 2 | eqid | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) = ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) | |
| 3 | 2 | fmpt | ⊢ ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ ↔ ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 4 | 1 3 | bitr4di | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ ) ) |