Metamath Proof Explorer
Description: An equality theorem for the maps-to notation. (Contributed by Mario
Carneiro, 16-Dec-2013)
|
|
Ref |
Expression |
|
Assertion |
mpteq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
⊢ ( 𝑥 ∈ 𝐴 → 𝐶 = 𝐶 ) |
2 |
1
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐴 𝐶 = 𝐶 |
3 |
|
mpteq12 |
⊢ ( ( 𝐴 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 = 𝐶 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
4 |
2 3
|
mpan2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |