Metamath Proof Explorer


Theorem mpteq12da

Description: An equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021) Remove dependency on ax-10 . (Revised by SN, 11-Nov-2024)

Ref Expression
Hypotheses mpteq12da.1 𝑥 𝜑
mpteq12da.2 ( 𝜑𝐴 = 𝐶 )
mpteq12da.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐷 )
Assertion mpteq12da ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )

Proof

Step Hyp Ref Expression
1 mpteq12da.1 𝑥 𝜑
2 mpteq12da.2 ( 𝜑𝐴 = 𝐶 )
3 mpteq12da.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐷 )
4 nfv 𝑦 𝜑
5 3 eqeq2d ( ( 𝜑𝑥𝐴 ) → ( 𝑦 = 𝐵𝑦 = 𝐷 ) )
6 5 pm5.32da ( 𝜑 → ( ( 𝑥𝐴𝑦 = 𝐵 ) ↔ ( 𝑥𝐴𝑦 = 𝐷 ) ) )
7 2 eleq2d ( 𝜑 → ( 𝑥𝐴𝑥𝐶 ) )
8 7 anbi1d ( 𝜑 → ( ( 𝑥𝐴𝑦 = 𝐷 ) ↔ ( 𝑥𝐶𝑦 = 𝐷 ) ) )
9 6 8 bitrd ( 𝜑 → ( ( 𝑥𝐴𝑦 = 𝐵 ) ↔ ( 𝑥𝐶𝑦 = 𝐷 ) ) )
10 1 4 9 opabbid ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐶𝑦 = 𝐷 ) } )
11 df-mpt ( 𝑥𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
12 df-mpt ( 𝑥𝐶𝐷 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐶𝑦 = 𝐷 ) }
13 10 11 12 3eqtr4g ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )