Step |
Hyp |
Ref |
Expression |
1 |
|
mpteq12da.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
mpteq12da.2 |
⊢ ( 𝜑 → 𝐴 = 𝐶 ) |
3 |
|
mpteq12da.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐷 ) |
4 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
5 |
3
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = 𝐵 ↔ 𝑦 = 𝐷 ) ) |
6 |
5
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ) ) |
7 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ) |
8 |
7
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
9 |
6 8
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
10 |
1 4 9
|
opabbid |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) } ) |
11 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
12 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) } |
13 |
10 11 12
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) ) |