Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Functions
mpteq12daOLD
Metamath Proof Explorer
Description: Obsolete version of mpteq12da as of 11-Nov-2024. (Contributed by Glauco Siliprandi , 23-Oct-2021) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
mpteq12daOLD.1
⊢ Ⅎ 𝑥 𝜑
mpteq12daOLD.2
⊢ ( 𝜑 → 𝐴 = 𝐶 )
mpteq12daOLD.3
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐷 )
Assertion
mpteq12daOLD
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) )
Proof
Step
Hyp
Ref
Expression
1
mpteq12daOLD.1
⊢ Ⅎ 𝑥 𝜑
2
mpteq12daOLD.2
⊢ ( 𝜑 → 𝐴 = 𝐶 )
3
mpteq12daOLD.3
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐷 )
4
1 2
alrimi
⊢ ( 𝜑 → ∀ 𝑥 𝐴 = 𝐶 )
5
1 3
ralrimia
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 )
6
mpteq12f
⊢ ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) )
7
4 5 6
syl2anc
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) )