Metamath Proof Explorer


Theorem mpteq12daOLD

Description: Obsolete version of mpteq12da as of 11-Nov-2024. (Contributed by Glauco Siliprandi, 23-Oct-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mpteq12daOLD.1 𝑥 𝜑
mpteq12daOLD.2 ( 𝜑𝐴 = 𝐶 )
mpteq12daOLD.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐷 )
Assertion mpteq12daOLD ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )

Proof

Step Hyp Ref Expression
1 mpteq12daOLD.1 𝑥 𝜑
2 mpteq12daOLD.2 ( 𝜑𝐴 = 𝐶 )
3 mpteq12daOLD.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐷 )
4 1 2 alrimi ( 𝜑 → ∀ 𝑥 𝐴 = 𝐶 )
5 1 3 ralrimia ( 𝜑 → ∀ 𝑥𝐴 𝐵 = 𝐷 )
6 mpteq12f ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥𝐴 𝐵 = 𝐷 ) → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )
7 4 5 6 syl2anc ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )