| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 𝐴 = 𝐶 |
| 2 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 |
| 3 |
1 2
|
nfan |
⊢ Ⅎ 𝑥 ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) |
| 4 |
|
nfv |
⊢ Ⅎ 𝑦 ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) |
| 5 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 = 𝐷 ) |
| 6 |
5
|
eqeq2d |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = 𝐵 ↔ 𝑦 = 𝐷 ) ) |
| 7 |
6
|
pm5.32da |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ) ) |
| 8 |
|
sp |
⊢ ( ∀ 𝑥 𝐴 = 𝐶 → 𝐴 = 𝐶 ) |
| 9 |
8
|
eleq2d |
⊢ ( ∀ 𝑥 𝐴 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶 ) ) |
| 10 |
9
|
anbi1d |
⊢ ( ∀ 𝑥 𝐴 = 𝐶 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 11 |
7 10
|
sylan9bbr |
⊢ ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 12 |
3 4 11
|
opabbid |
⊢ ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) } ) |
| 13 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
| 14 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷 ) } |
| 15 |
12 13 14
|
3eqtr4g |
⊢ ( ( ∀ 𝑥 𝐴 = 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐷 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) ) |