Metamath Proof Explorer
Description: An equality inference for the maps-to notation. (Contributed by Scott
Fenton, 27-Oct-2010) (Revised by Mario Carneiro, 16-Dec-2013)
|
|
Ref |
Expression |
|
Hypotheses |
mpteq12i.1 |
⊢ 𝐴 = 𝐶 |
|
|
mpteq12i.2 |
⊢ 𝐵 = 𝐷 |
|
Assertion |
mpteq12i |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpteq12i.1 |
⊢ 𝐴 = 𝐶 |
2 |
|
mpteq12i.2 |
⊢ 𝐵 = 𝐷 |
3 |
1
|
a1i |
⊢ ( ⊤ → 𝐴 = 𝐶 ) |
4 |
2
|
a1i |
⊢ ( ⊤ → 𝐵 = 𝐷 ) |
5 |
3 4
|
mpteq12dv |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) ) |
6 |
5
|
mptru |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) |