Metamath Proof Explorer


Theorem mpteq12i

Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010) (Revised by Mario Carneiro, 16-Dec-2013)

Ref Expression
Hypotheses mpteq12i.1 𝐴 = 𝐶
mpteq12i.2 𝐵 = 𝐷
Assertion mpteq12i ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 )

Proof

Step Hyp Ref Expression
1 mpteq12i.1 𝐴 = 𝐶
2 mpteq12i.2 𝐵 = 𝐷
3 1 a1i ( ⊤ → 𝐴 = 𝐶 )
4 2 a1i ( ⊤ → 𝐵 = 𝐷 )
5 3 4 mpteq12dv ( ⊤ → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 ) )
6 5 mptru ( 𝑥𝐴𝐵 ) = ( 𝑥𝐶𝐷 )