Metamath Proof Explorer
Description: An equality theorem for the maps-to notation. (Contributed by Mario
Carneiro, 11-Jun-2016)
|
|
Ref |
Expression |
|
Hypothesis |
mpteq1d.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
Assertion |
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpteq1d.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
mpteq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |