Metamath Proof Explorer


Theorem mpteq1d

Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis mpteq1d.1 ( 𝜑𝐴 = 𝐵 )
Assertion mpteq1d ( 𝜑 → ( 𝑥𝐴𝐶 ) = ( 𝑥𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 mpteq1d.1 ( 𝜑𝐴 = 𝐵 )
2 mpteq1 ( 𝐴 = 𝐵 → ( 𝑥𝐴𝐶 ) = ( 𝑥𝐵𝐶 ) )
3 1 2 syl ( 𝜑 → ( 𝑥𝐴𝐶 ) = ( 𝑥𝐵𝐶 ) )