Metamath Proof Explorer
Description: An equality theorem for the maps-to notation. (Contributed by Glauco
Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
mpteq1df.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
mpteq1df.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
Assertion |
mpteq1df |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpteq1df.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
mpteq1df.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
3 |
1 2
|
alrimi |
⊢ ( 𝜑 → ∀ 𝑥 𝐴 = 𝐵 ) |
4 |
|
eqid |
⊢ 𝐶 = 𝐶 |
5 |
4
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 𝐶 = 𝐶 |
6 |
|
mpteq12f |
⊢ ( ( ∀ 𝑥 𝐴 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 = 𝐶 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
7 |
3 5 6
|
sylancl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |