Metamath Proof Explorer
		
		
		
		Description:  An equality theorem for the maps-to notation.  (Contributed by Glauco
       Siliprandi, 23-Oct-2021)  (Proof shortened by SN, 11-Nov-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mpteq1df.1 | ⊢ Ⅎ 𝑥 𝜑 | 
					
						|  |  | mpteq1df.2 | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) | 
				
					|  | Assertion | mpteq1df | ⊢  ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑥  ∈  𝐵  ↦  𝐶 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mpteq1df.1 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | mpteq1df.2 | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) | 
						
							| 3 |  | eqidd | ⊢ ( 𝜑  →  𝐶  =  𝐶 ) | 
						
							| 4 | 1 2 3 | mpteq12df | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑥  ∈  𝐵  ↦  𝐶 ) ) |