Metamath Proof Explorer
Description: An equality theorem for the maps-to notation. (Contributed by Glauco
Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypothesis |
mpteq1i.1 |
⊢ 𝐴 = 𝐵 |
|
Assertion |
mpteq1i |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpteq1i.1 |
⊢ 𝐴 = 𝐵 |
2 |
|
mpteq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |