Metamath Proof Explorer


Theorem mpteq2dv

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypothesis mpteq2dv.1 ( 𝜑𝐵 = 𝐶 )
Assertion mpteq2dv ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 mpteq2dv.1 ( 𝜑𝐵 = 𝐶 )
2 1 adantr ( ( 𝜑𝑥𝐴 ) → 𝐵 = 𝐶 )
3 2 mpteq2dva ( 𝜑 → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐶 ) )