Metamath Proof Explorer


Theorem mpteq2ia

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013)

Ref Expression
Hypothesis mpteq2ia.1 ( 𝑥𝐴𝐵 = 𝐶 )
Assertion mpteq2ia ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 mpteq2ia.1 ( 𝑥𝐴𝐵 = 𝐶 )
2 eqid 𝐴 = 𝐴
3 2 ax-gen 𝑥 𝐴 = 𝐴
4 1 rgen 𝑥𝐴 𝐵 = 𝐶
5 mpteq12f ( ( ∀ 𝑥 𝐴 = 𝐴 ∧ ∀ 𝑥𝐴 𝐵 = 𝐶 ) → ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐶 ) )
6 3 4 5 mp2an ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐶 )