Metamath Proof Explorer
Description: An equality inference for the maps-to notation. (Contributed by Mario
Carneiro, 16-Dec-2013)
|
|
Ref |
Expression |
|
Hypothesis |
mpteq2ia.1 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 = 𝐶 ) |
|
Assertion |
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpteq2ia.1 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 = 𝐶 ) |
2 |
|
eqid |
⊢ 𝐴 = 𝐴 |
3 |
2
|
ax-gen |
⊢ ∀ 𝑥 𝐴 = 𝐴 |
4 |
1
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 |
5 |
|
mpteq12f |
⊢ ( ( ∀ 𝑥 𝐴 = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
6 |
3 4 5
|
mp2an |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |