Metamath Proof Explorer


Theorem mptexd

Description: If the domain of a function given by maps-to notation is a set, the function is a set. Deduction version of mptexg . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis mptexd.1 ( 𝜑𝐴𝑉 )
Assertion mptexd ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 mptexd.1 ( 𝜑𝐴𝑉 )
2 mptexg ( 𝐴𝑉 → ( 𝑥𝐴𝐵 ) ∈ V )
3 1 2 syl ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ V )