Metamath Proof Explorer


Theorem mptexf

Description: If the domain of a function given by maps-to notation is a set, the function is a set. Inference version of mptexg . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses mptexf.1 𝑥 𝐴
mptexf.2 𝐴 ∈ V
Assertion mptexf ( 𝑥𝐴𝐵 ) ∈ V

Proof

Step Hyp Ref Expression
1 mptexf.1 𝑥 𝐴
2 mptexf.2 𝐴 ∈ V
3 1 mptexgf ( 𝐴 ∈ V → ( 𝑥𝐴𝐵 ) ∈ V )
4 2 3 ax-mp ( 𝑥𝐴𝐵 ) ∈ V